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Abstract
The hippocampal mossy fibers contain a substantial quantity of loosely-bound zinc in their 
glutamatergic presynaptic vesicles, which is released in synaptic transmission processes. Despite 
the large number of studies about this issue, the zinc changes related to short and long-term forms 
of potentiation are not totally understood. This work focus on zinc signals associated with 
chemically induced mossy fiber synaptic plasticity, in particular on postsynaptic zinc signals evoked
by KCl depolarization. The signals were detected using the medium affinity fluorescent zinc 
indicator Newport Green. The application of large concentrations of KCl, 20 mM and 60 mM, in the
extracellular medium, evoked zinc potentiations that decreased and remained stable after washout 



of the first and the second media, respectively. These short and long-lasting enhancements are 
considered to be due to zinc entry into postsynaptic neurons. We have also observed that following 
established zinc potentiation, another application of 60 mM KCl only elicited further enhancement 
when combined with external zinc. These facts support the idea that the KCl-evoked presynaptic 
depolarization causes higher zinc release leading to zinc influx into the postsynaptic region.

Keywords: zinc; Newport Green (NG); mossy fiber synapses; hippocampal CA3 area

Response to reviews:
response to reviews file - download

http://mmplus.sav.sk/MMPlus2/api/download/articleFile/56717/avmbuODRdA7eiar8WJA9I5QM98lM4onk2JPYrHjFJg3liWGN9RpeahWGGgaqrt5c


1 
 

Postsynaptic zinc potentiation elicited by KCl 1 

depolarization at hippocampal mossy fiber 2 

synapses 3 

 4 

F.C. Bastosa,, S.A. Lopesb, V.N. Corceiroc,  C.M. Matiasd, J.C. Dionísioe, F.D.S. 5 

Sampaio dos Aidosf, P.J. Mendesg, R.M. Santosh, R.M. Quinta-Ferreirai  and M.E. 6 

Quinta-Ferreiraj    7 

a,d,e,h ,j
CNC, Univ. Coimbra, Portugal; 

a,b,c,f ,g,j 
Dept. Physics, Univ. Coimbra, Portugal; 8 

d
Dept. Physics UTAD, Vila Real, Portugal; 

e
Dept. Animal Biology, Univ. Lisbon, Portugal; 9 

f
CFisUC, Univ. Coimbra, Portugal; 

g
LIP, Coimbra, Portugal; 

h
Dept. Life Sciences, Univ. 10 

Coimbra, Portugal;  
i
CIEPQPF- Dept. Chemical Engineering, Univ. Coimbra, Portugal  11 

______________________________________________________________________ 12 

Abstract  13 

The hippocampal mossy fibers contain a substantial quantity of loosely-bound zinc in 14 

their glutamatergic presynaptic vesicles, which is released in synaptic transmission 15 

processes. Despite the large number of studies about this issue, the zinc changes related 16 

to short and long-term forms of potentiation are not totally understood. This work focus 17 

on zinc signals associated with chemically induced mossy fiber synaptic plasticity, in 18 

particular on postsynaptic zinc signals evoked by KCl depolarization. The signals were 19 

detected using the medium affinity fluorescent zinc indicator Newport Green. The 20 

application of large concentrations of KCl, 20 mM and 60 mM, in the extracellular 21 

medium, evoked zinc potentiations that decreased and remained stable after washout of 22 

the first and the second media, respectively. These short and long-lasting enhancements 23 

are considered to be due to zinc entry into postsynaptic neurons. We have also observed 24 

that following established zinc potentiation, another application of 60 mM KCl only 25 

elicited further enhancement when combined with external zinc. These facts support the 26 

idea that the KCl-evoked presynaptic depolarization causes higher zinc release leading 27 

to zinc influx into the postsynaptic region. 28 

  29 

 30 
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Introduction 46 

 47 

Zinc is one of the most important divalent cations that are present in the mammalian 48 

forebrain (Frederickson et al., 2000; Sensi et al., 2011). Only a small amount of zinc is 49 

concentrated in the presynaptic boutons of zinc-containing neurons (Frederickson, 50 

1989), being the larger fraction of zinc found in metalloproteins, which form complexes 51 

with zinc with very high-affinity (Jacob et al., 1998). One of the most important zinc 52 

releasable pools is found in hippocampal mossy fibers (Choi, et al., 1998), which have 53 

large boutons and are located very close to the apical dendrites of CA3 neurons, 54 

suggesting that they are part of a uniquely strong synapse (Bischofberger et al., 2006). 55 

Mossy fiber synapses sequester, accumulate and release zinc from their glutamatergic 56 

presynaptic vesicles that contain the zinc transporter ZnT-3, which pumps zinc into the 57 

vesicles and is expressed exclusively in the brain (Palmiter et al., 1996; Frederickson et 58 

al., 2005). The depolarization of zinc-containing neurons leads to calcium-dependent 59 

glutamate and zinc co-release via the exocytosis of their vesicles (Howell et al., 1984; 60 

Perez-Clausell and Danscher, 1986).  Large depolarizations, evoked by electrical or 61 

chemical stimulation, can result in the formation of long-term potentiation (LTP) (Bliss 62 

and Collingridge, 1993; Bortolotto and Collingridge, 1993). This form of synaptic 63 

plasticity consists of a long lasting enhancement of synaptic transmission and is 64 

considered to be involved in learning and memory processes in the brain (Malenka and 65 

Bear, 2004). LTP can be induced by high-frequency stimulation (tetanus) and also by 66 

the application of large amounts of extracellular potassium in hippocampal slices (Fleck 67 

et al., 1992; Bernard et al., 1994; Roisin et al., 1997) and in dissociated neuronal 68 

cultures (Appleby et al., 2011). Potassium-induced LTP shares some properties with 69 

tetanus-induced LTP in hippocampal CA1 area (Fleck et al., 1992; Bernard et al., 70 

1994). For example, the population EPSP amplitudes had similar enhancements in both 71 

cases (Fleck et al., 1992). Other forms of chemically-evoked LTP include the TEA- 72 

LTP (Suzuki and Okada, 2009) and also LTP induced by the application of  4-amino 73 

pyridine, mediated by the inhibition of voltage-dependent potassium channels, which 74 

causes significant cell depolarization (Bancila et al., 2004). The depolarization 75 

associated with chemically- induced LTP may activate simultaneously all potentiable 76 

mossy fiber synapses (Zhao et al., 2012).  It was observed that the induction of 77 

tetanically-evoked mossy fiber LTP in CA3 hippocampal area, is accompanied by 78 
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significant zinc release from mossy fibers (Quinta-Ferreira et al., 2004; Qian and 79 

Noebels, 2005; Quinta-Ferreira and Matias, 2005; Matias et al., 2010). Thus, intense 80 

high-frequency stimulation causes an increase of zinc in the synaptic cleft, that may 81 

reach 10-100 M, and also an enhancement of postsynaptic intracellular zinc (Vogt et 82 

al., 2000; Li et al., 2001a,b; Ueno et al., 2002; Paoletti et al., 2009). Potassium-induced 83 

depolarization evokes, as well, a postsynaptic zinc increase (Li et al., 2001a,b; 84 

Ketterman and Li, 2008), which may, at least in part, be explained by zinc entry through 85 

voltage-gated calcium channels and calcium -permeable glutamate receptors, as 86 

observed applying exogenous zinc in cell cultures (Sensi et al., 1997; Marin et al., 87 

2000). Cytoplasmic zinc enhancements were also observed in non-neuronal cells, 88 

following membrane potassium depolarization (Slepchenko and Li, 2012). In both 89 

cortical and non-neuronal cells, there is also evidence that zinc is taken up in 90 

intracellular stores upon stimulation, being considered that it could be stored in the 91 

endoplasmic reticulum, the Golgi apparatus and mitochondria  (Saris and Niva, 1994; 92 

Sensi et al., 2000; Stork and Li, 2010;  Qin et al., 2011; Sensi et al., 2011). Because of 93 

its complexity and the large number of mechanisms involved, the characterization of 94 

zinc dynamics associated with chemically- induced synaptic potentiation remains to be 95 

clarified. 96 

The aim of this work was to address intracellular zinc changes associated with 97 

potassium-evoked mossy fiber synaptic plasticity in CA3 hippocampal area. For this 98 

purpose, hippocampal slices were loaded with the permeant form of the zinc selective 99 

fluorescent probe Newport Green (NG) (Haugland, 1996) being the cells depolarized 100 

with different concentrations of extracellularly applied KCl.  101 

Most of the present findings have been reported in abstract form. 102 

 103 

 104 

 105 

Materials and Methods 106 

 107 

Data were collected in the synaptic system mossy fibers - CA3 pyramidal cells of 108 

hippocampal slices obtained from pregnant Wistar rats (10-13 weeks old). The animals 109 

were sacrificed by cervical dislocation and the isolated brain was rapidly cooled (5-8° 110 

C) in artificial cerebrospinal fluid (ACSF).  The slices (400 m thick) were cut 111 
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transversely and transferred to a container with ACSF at room temperature, saturated 112 

with a gas mixture (95% O2, 5 % CO2). They remained there at least 1 hour before 113 

being used in an experiment. The ACSF medium had the following composition (in 114 

mM): NaCl 124; KCl 3.5; NaHCO3 24; NaH2PO4 1.25; MgCl2 2; CaCl2 2 and D-115 

glucose 10; pH 7.4. The slices were subsequently transferred to the experimental 116 

chamber where they were perfused with ACSF, at a rate of 1.5 to 2 ml/min, at 117 

temperatures in the range 30-32° C. The KCl solutions consisted of ACSF with higher 118 

concentrations of KCl, 20 mM and 60 mM. In some experiments ZnCl2 (1 mM) was 119 

added to the 60 mM KCl medium. All media were perfused for periods of 10-30 min. 120 

 121 

Experimental setup and optical measurements  122 

The measurement of optical signals was performed using a fluorescence microscope 123 

(Zeiss Axioskop) with a transfluorescence arrangement, including a halogen light 124 

source (12V, 100 W), a narrow band (10 nm) excitation filter (480 nm) and a high-pass 125 

emission filter (> 500 nm). The light was collected by a water immersion lens (40x, 126 

N.A. 0.75) and then focused on a photodiode (Hammamatsu, 1 mm2), passing its signal 127 

through a current/voltage converter (I/V) with a 1 GΩ feedback resistance. The signals 128 

were digitally processed by means of a 16 bit analog/digital converter, at a frequency of 129 

0.017 Hz and analyzed using the Signal ExpressTM software from National Instruments. 130 

For measuring zinc changes the hippocampal slices were incubated for 1 h in a medium 131 

containing the permeant form of the zinc indicator Newport Green (NG) (5 M). This 132 

solution was obtained dissolving 1 mg NG in 250 µl of DMSO and then diluting 5 µl of 133 

this mixture (DMSO + NG) in 5 ml of ACSF containing 5 µl of pluronic acid F-127. 134 

This indicator has a moderate affinity for zinc (Kd ~ 1 M) and a relatively low affinity 135 

for calcium (Kd > 100 M (Haughland, 1996). The optical data consist of fluorescence 136 

values represented at 1 minute intervals, in ACSF or in a KCl medium. The signals were 137 

corrected for the autofluorescence component, evaluated as the average of ten data 138 

points obtained from an equivalent region of dye-free slices, perfused with the normal 139 

solution. All measurements are presented as mean  SEM. Statistical significance was 140 

evaluated using the Mann-Whitney U test (p<0.05). 141 

Drugs used were NG, Pluronic acid F-127 (Life technologies, Carlsbad, CA); DMSO 142 

(Sigma-Aldrich, Sintra, PT).  143 
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All experiments were carried out in accordance with the European Communities 144 

Council Directive. All efforts were made to minimize animal suffering and to use only 145 

the number of animals necessary to produce reliable scientific data.  146 

 147 

Results 148 

  149 

The fluorescence signals were collected from the stratum lucidum of CA3 hippocampal 150 

area, as shown in Fig. 1a. It was observed that dye-free slices have a significant 151 

autofluorescence, triggered by 480 nm incident light and detected for wavelengths 152 

above 500 nm. In order to evaluate the contribution of autofluorescence to the signals 153 

detected from NG-containing slices, both types of data are indicated in Fig 1b. It can be 154 

noticed that autofluorescence is a major part of the total fluorescence, representing 155 

about 75% of it. Thus, all signals were corrected subtracting the autofluorescence 156 

component, that was obtained from non-incubated slices. The remaining fluorescence is 157 

due to the formation of the NG-zinc complex (Fig. 2a). Since the permeant form of 158 

Newport Green is hydrolyzed in the intracellular medium, becoming charged, it cannot 159 

permeate the vesicular membranes and is thus unable to detect presynaptic zinc in the 160 

vesicles (Li et al., 2001b). For this reason, it is considered that the corrected optical 161 

signals have a postsynaptic origin.  162 

The perfusion of the medium containing 20 mM KCl caused a rise in the zinc signals to 163 

119  5 %, at 35-40 min (n = 3, p<0.05), that is partially reverted after a 30 min period, 164 

upon returning to the initial ACSF solution, as shown in Fig. 2a. However, the medium 165 

with a higher concentration of KCl, 60 mM, evoked a zinc potentiation that is 166 

maintained following washout. In Fig. 2b it can be observed that the amplitude of the 167 

zinc signals obtained in the presence of 60 mM KCl increased to 184   14 %, at 35-40 168 

min (n = 7, p<0.05). These signals remained stable following the withdrawal of KCl, 169 

revealing the establishment of a KCl induced persistent zinc potentiation measuring 181 170 

 13 %, at 65-70 min (n = 7), with respect to baseline.    171 

 172 

 173 

The following experiments were designed to study the effect of repeated applications of 174 

the KCl media considered before. A second addition of 20 mM KCl caused similar zinc 175 
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changes to those induced by the first one, i.e. an enhancement in the presence of that 176 

medium followed by a decrease in its absence (Fig. 3a). In the case of the 60 mM KCl 177 

solution the repeated perfusion did not induce further potentiation (Fig. 3b). The results 178 

in Fig. 3c rule out the possibility of saturation of the indicator (NG) by zinc, since the 179 

application of extracellular zinc (1 mM) accompanying KCl (60 mM) resulted in further 180 

zinc potentiation that was maintained upon returning to ACSF  181 

  182 
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 183 

 184 

 185 

Discussion     186 

In this study we observed zinc signals associated with potassium-induced depolarization 187 

of hippocampal mossy fibers. It has been shown that zinc is released from these fibers 188 

into the extracellular medium when electrical stimuli are delivered (Li et al., 2001a; 189 

Quinta-Ferreira et al., 2004, Khan et al., 2014, Vergnano et al., 2014) and that it enters 190 

to postsynaptic neurons following intense electrical or chemical stimulation (Vogt et al., 191 

2000; Li et al., 2001a,b; Ueno et al., 2002; Ketterman and Li, 2008). The exposition of 192 

the slices to a high concentration of exogenous potassium causes an enhancement of the 193 

measured fluorescence signals, considered to be associated with postsynaptic zinc 194 

changes (Li et al., 2001b; Ketterman and Li, 2008). The potassium-induced increase in 195 

the postsynaptic zinc concentration may be explained by a rise in synaptic activity, 196 

caused by the potassium-evoked shift of the presynaptic membrane potential. In the 197 

presence of the 20 mM and 60 mM KCl solutions, the resting values increase to about   198 

-54 mV and -33 mV, respectively, thus leading to cell depolarization (Bancila et al., 199 

2004). This causes intense co-release of glutamate and zinc, followed by zinc entry into 200 

the postsynaptic area, through several types of receptors and channels. The subsequent 201 

depolarization of the spine region evoked by glutamate binding to postsynaptic AMPA, 202 

NMDA and  calcium permeable AMPA/Kainate receptors causes the opening of their 203 

channels and also of voltage dependent T- and L-type calcium channels which are 204 

located in the same membrane. Except for the AMPA channels, all the others are 205 

permeable to zinc, being the permeability ratio PCa / PZn for the calcium permeable 206 

AMPA/Kainate channels about 1.8 (Weiss and Sensi, 2000; Jia et al., 2002). This 207 

allows zinc entry to the postsynaptic region through the mentioned zinc permeant 208 

channels, namely L- and T-type VDCCs, NMDA and calcium permeable 209 

AMPA/Kainate receptors (Sensi et al., 1997; Sensi et al., 1999; Takeda et al., 2009). 210 

There is also experimental evidence that zinc can be released from intracellular stores 211 

following the blockade of postsynaptic endoplasmic reticulum calcium pumps (Stork 212 

and Li, 2010). In the present work, after removal of the KCl solution, the zinc signals 213 

decreased in the 20 mM medium and remained unchanged in the 60 mM one. It was 214 

also observed that, after the induction of the long-lasting zinc potentiation, another 215 
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application of KCl (60 mM) did not induce further zinc enhancement. However, when 216 

KCl (60 mM) was added in combination with extracellular zinc (1 mM), a second zinc 217 

potentiation was elicited, with similar magnitude. The mossy fiber boutons contain a 218 

huge amount of synaptic vesicles (~16,000), with about 20 active zones, being up to 219 

1400 vesicles ready to undergo exocytosis (Hallermann et al., 2003; Rollenhagen and 220 

Lubke, 2010). However, the inexistence of the second potentiation in the absence of 221 

exogenous zinc might be due to the lack of additional ready releasable vesicles, caused 222 

by the previous intense release. Overall the results suggest that the evoked zinc 223 

potentiations are due to zinc entry in the postsynaptic area.  224 

It was previously shown that KCl depolarization induces LTP in CA1 hippocampal 225 

area (Fleck et al., 1992; Bernard et al., 1994; Roisin et al., 1997). That potentiation may 226 

be evoked by an enhancement of the glutamate release process or be due to persistent 227 

modifications of postsynaptic channels permeabilities or an increase in the number of 228 

AMPA receptors in the hippocampal neurons (Malenka and Bear, 2004). Thus, the 229 

potassium-induced long-lasting potentiation, that is a form of LTP, may be expressed 230 

pre- or postsynaptically. There are a large number of studies that characterize mossy 231 

fiber LTP as presynaptically expressed, being mediated by enhanced glutamate release 232 

(Johnston et al., 1992; Malenka and Bear, 2004). However, some studies are in favor of 233 

the hypothesis of a postsynaptic locus for mossy fiber LTP expression (Yamamoto et 234 

al., 1992; Yeckel et al., 1999; Quinta-Ferreira et al., 2004, Suzuki and Okada, 2009). 235 

The main argument in favor of the presynaptic nature for mossy fiber LTP is the 236 

reduction of the paired-pulse ratio (the ratio of the amplitude of the second excitatory 237 

postsynaptic response to that of the first in two consecutive pulses), i.e. of paired-pulse 238 

facilitation, which is inversely correlated with the transmitter release probability 239 

(Zalutsky and Nicoll, 1990; Zucker and Regehr, 2002). However, changes in paired-240 

pulse ratio are not exclusively mediated by modifications of the presynaptic release 241 

probability. For example, they can be influenced by postsynaptic receptor 242 

desensitization and lateral diffusion (Frischknecht et al., 2009). Further support for the 243 

presynaptic locus of mossy fiber LTP, comes from quantal analysis, since the failure 244 

rate is negatively correlated with the average release probability. Thus, a lower failure 245 

rate after LTP induction means a higher probability of glutamate release (Malinow and 246 

Tsien, 1990).  However, that conclusion can only be achieved assuming a constant 247 

number of synapses. The discovery of postsynaptically silent synapses provided an 248 

explanation for the mentioned lower failure rate after LTP (Isaac et al., 1995).  More 249 
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experimental evidence in favor of the presynaptic hypothesis for the expression of 250 

mossy fiber LTP, is the effect of cAMP which mediates presynaptic mossy fiber LTP 251 

processes (Tong et al., 1996). Assuming a purely presynaptic locus for mossy fiber 252 

LTP, the zinc released from mossy fibers should rise after electrically- or chemically-253 

induced depolarization, since it is generally accepted that zinc is co-released with 254 

glutamate. However, there are experimental results showing that zinc release is not 255 

enhanced after high-frequency mossy fiber stimulation (Budde et al., 1997; Quinta-256 

Ferreira et al., 2004) and also following exposure to high-potassium concentrations 257 

(Ketterman and Li, 2008). Thus, the lack of enhancement of zinc release after LTP 258 

induction argues in favor of the contribution of postsynaptic mechanisms for the 259 

expression of mossy fiber LTP. Furthermore, the fact that the blockade of postsynaptic 260 

T-type VDCCs prevents the expression of this form of LTP is another strong argument 261 

in line with the postsynaptic hypothesis (Suzuki and Okada, 2009). As expected, in CA1 262 

hippocampal area, it was already shown that the potassium-induced LTP is mainly 263 

mediated by postsynaptic mechanisms (Roisin et al., 1997).  The possible postsynaptic 264 

expression of mossy fiber LTP might be mediated by zinc influxes into postsynaptic 265 

neurons. However, there is still controversy about the role of zinc in mossy fiber LTP, 266 

existing studies in favour (Lu et al., 2000; Li et al., 2001a) and against it (Vogt et al., 267 

2000; Matias et al., 2006). The reason for these different results may be the variety of  268 

experimental approaches used that may lead to different intracellular zinc availability 269 

and metal/chelator complexes, some of which are potentially toxic (Armstrong et al., 270 

2001). Another possible explanation is that the chelators used may be neuroprotective or 271 

neurotoxic, in pathological or normal situations (Cuajungco and Lees, 1997; Armstrong 272 

et al., 2001). Further support for the role of zinc in mossy fiber LTP comes from the 273 

existence of signal transduction pathways that are modulated by zinc (Frederickson and 274 

Bush, 2001). Our results support the idea that the zinc signals are due to the formation 275 

of postsynaptic zinc-NG complexes, since they increase with extracellular zinc that may 276 

permeate the postsynaptic membrane. They also suggest that the zinc potentiation 277 

associated with a long-term enhancement of synaptic activity is expressed 278 

postsynaptically.  279 
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 447 

 448 

Figure legends: 449 

 450 

Fig. 1 – Diagram of the hippocampal slice, autofluorescence and basal fluorescence. (a) 451 

Schematic representation of the hippocampal slice. The circle indicates the region from where 452 

the optical signals were recorded. mf – mossy fibers, DG – dentate gyrus. (b) Fluorescence from 453 

non-incubated and from Newport Green containing slices. Autofluorescence (open symbols) 454 

and fluorescence signals from slices incubated with 5 M of the zinc indicator Newport Green 455 

DCF (closed symbols) (n = 16).  The points represent the mean ± SEM. 456 

 457 

Fig. 2- Pooled data of KCl induced zinc changes obtained with Newport Green. (a) Application 458 

of 20 mM KCl evoked a rise in the NG fluorescence that was reverted upon washout (n = 3, 459 

p<0.05). (b) Similar to a, but for 60 mM KCl (n = 7, p<0.05) (c). All values were normalized by 460 

the average of the first 10 responses and represent the mean ± SEM. 461 

 462 

Fig. 3- Zinc signals during consecutive applications of KCl media. (a) Repeated perfusion of 20 463 

mM KCl induced similar transient potentiations.(n = 3, p<0.05) . (b) Subjecting the slices a 464 

second time to 60 mM KCl caused no further zinc enhancement. (n = 3, p>0.1). c. Subsequent 465 

zinc potentiations in slices exposed first to KCl (60 mM) and then to a mixture of KCl (60 mM) 466 

and ZnCl2 (1 mM) (n = 2, p<0.05). All values were normalized by the mean of the first 10 467 

responses and represent the mean ± SEM. 468 

 469 

 470 
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