doi: 10.4149/gpb_2021031

Review The structure of the unstructured: mosaic of tau protein linear motifs obtained by high-resolution techniques and molecular simulation Ondrej Cehlar¹, Olga Bagarova^{1,2,3}, Lenka Hornakova^{1,2,4} and Rostislav Skrabana¹ ¹ Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia ² Department of Biochemistry, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia ³ Institute of Experimental Physics, Department of Biophysics, Slovak Academy of Sciences, Kosice, Slovakia ⁴ Institute of Medical Chemistry, Biochemistry and Clinical Biochemistry, Medical Faculty, Comenius University, Bratislava, Slovakia Abstract. Intrinsically disordered proteins are flexible molecules with important physiological functions. Their mode of action often involves short segments, called linear motifs, which may exhibit distinct structural propensities. Tau is intrinsically disordered, microtubule-associated pro-tein involved in the pathogenesis of various tauopathies. In this review we analyze the collection of 3D structures of tau local linear motifs gained from the deposited structures of tau complexes with various binding partners as well as of tau-tau complexes; determined by X-ray and electron crystallography, single-particle electron microscopy, NMR spectroscopy and molecular dynamics simulations. Insights into the partially stabilized conformations of tau linear motifs are valuable for understanding the physiological and pathological processes involving tau protein. Key words: Tau protein — Conformation — Linear motif — Antibody — X-ray crystallography Abbreviations: FRET, fluorescence resonance energy transfer; MTBD, microtubule binding domain; MTBR, microtubule binding repeat; PHF, paired helical filament; PRE, paramagnetic relaxation enhancement. Introduction functions of globular proteins. However, many IDPs play a role in the pathogenesis of human diseases e.g. neurode-Intrinsically disordered proteins and protein regions (IDPs/ generative diseases, cancer and diabetes (Uversky et al. 2008). IDRs) form a distinct, recently identified structural and In contrast to folded globular proteins, which often in-functional entity of the proteome of all kingdoms of life teract by means of a large contact area supported by protein (Dyson and Wright 2005). IDPs don't attain a constant 3D tertiary structure, IDPs use for their interactions indepen-structure under physiological conditions, having a relatively dently behaving short segments called linear motifs. Despite flat energy landscape with many shallow minima that can their short length and lack of stable structure, linear motifs

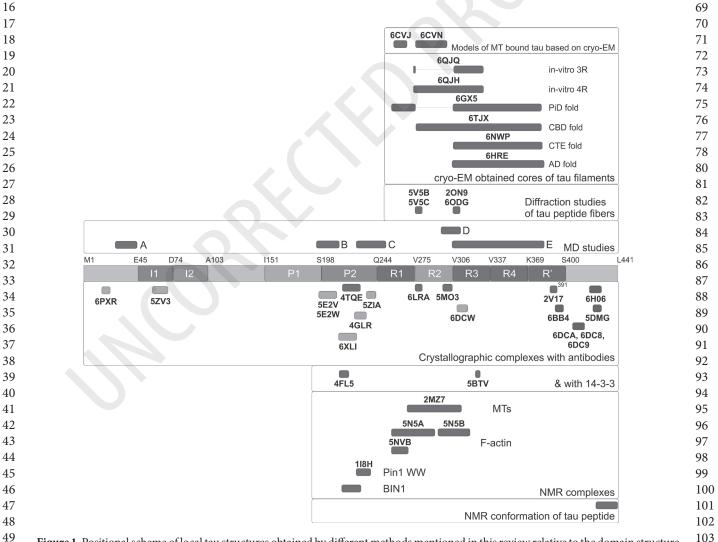
be described as a conformational ensemble of fluctuating structures (Fisher and Stultz 2011). IDPs are highly abundant in nature and their functional repertoire supplements the

- Correspondence to: Ondrej Cehlar, Institute of Neuroimmunology, Slovak Academy of Sciences, Dubravská cesta 9, 845 10 Bratislava, Slovakia
- E-mail: ondrej.cehlar@savba.sk

may have detectable structural propensities, which often resemble bound-state conformations. Molecular dynamics (MD) simulations are able to detect conformational ensem-bles of linear motifs in uncomplexed state, giving a clue to their interaction potential (Cino et al. 2013a). For example, among 10 disordered binding partners of the Kelch domain of the hub protein Keap1, the highest affinity was measured for those that resembled the bound-state like conformation

© The Authors 2021. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial use, distribution, and reproduction in any medium, provided the

original work is properly cited.


to the highest extent during MD simulation (Cino et al. 2013b). Therefore, intramolecular contacts in an intrinsically disordered region may serve as important intermolecular binding determinants (Davey 2019).

Neuronal protein tau is a representative member of the group of IDPs. The conversion of tau from physiological disordered form to rigid amyloid fibres is the hallmark of severe diseases - neurodegenerative tauopathies including Alzheimer's disease (AD). The driving forces and atomic 10 details of this metamorphosis are largely unknown and insights into the conformational preferences of tau partial 12 segments may bring important clues.

The main physiological role of tau protein is to stabilize microtubules and regulate their dynamics but tau is also involved in actin binding, neuroplasticity, axonal transport

and axonal sprouting, cell cycle regulation, synaptic trans-54 mission and interactions with plasma membrane (Castellani 55 and Perry 2019). 56

The alternative splicing of MAPT gene produces six 57 tau protein isoforms present in CNS, which differ in the 58 presence or absence of N-terminal inserts (none, one or 59 two) and by the presence of three (3R isoforms) or four 60 (4R isoforms) microtubule binding repeat regions (MTBR) 61 (Goedert et al. 1989). Longer tau isoforms with large N-62 terminal insertions are expressed in peripheral nervous 63 system (Fischer and Baas 2020). Whereas the length of 64 CNS tau isoforms ranges from 352 to 441 amino acids, 65 the longest peripheral tau isoform is 758 amino acids long 66 (UniProt entry P10636). Based on sequence characteris-67 tics and function, tau molecule can be divided into the 68

49 Figure 1. Positional scheme of local tau structures obtained by different methods mentioned in this review relative to the domain structure 50 of the longest human tau isoform 2N4R (tau40) with N-terminal inserts I1, I2, proline rich regions P1, P2, MTBRs R1-R4 and region 104 51 following repeats R. Position of tau peptide is shown with corresponding PDB ID, if available. Depicted tau peptides that were subjects 105 52 of MD studies: A. N-terminal tau fragment 26-44 (Perini et al. 2019), B. AT8 epitope phospho-peptide (Gandhi et al. 2015), C. Tau 106 53 phospho-peptide 225-250 (Lyons et al. 2014), D. R2-R3 interface (Chen et al. 2019), E. AD PHF core dimer (Derreumaux et al. 2020). 107

1

2

3

4

5

6

7

8

9

11

13

14

2

3

4

5

6

7

8

9

10

11

12

13

14

N-terminal projection domain (amino acids 1–150, numbering of the longest CNS isoform), proline rich region (151–243), microtubule binding domain (MTBD, 244–399) and C-terminal tail (400–441). Tau protein can undergo many posttranslational modifications: phosphorylation, truncation, glycosylation, glycation, nitration, ubiquitination, SUMOylation, prolyl isomerization, acetylation that have structural and functional implications.

Disruption of finely tuned network of specific albeit weak interactions mediated by (pre)structured linear motifs in the

tau molecule may be the turning point of neurodegeneration.54Small molecules predicted to bind computationally identified55structural motifs in the tau aggregation domain were able56to delay tau aggregation *in vitro* (Baggett and Nath 2018).57Transiently populated linear motifs identified by MD or58high-resolution experimental techniques may therefore rep-59resent potential druggable targets for tauopathy treatment.60

The preferred conformations of linear motifs in the otherwise disordered tau molecule may constitute immunodominant hotspots, recognised by binders of naïve B-cell

 Table 1. Tau structures of nonredundant segments obtained by X-ray or electron crystallography

Binding p	partner: Antibody Fab fragment			
PDBID	Antibody name	Tau peptide modelled	Tau peptide used for crystallization	Resolution (Å)
6PXR	IPN002 (Sopko et al. 2020)	¹⁵ AGTYGLGD ²² (Fig. 2A)	9-26	1.56
5ZV3	CBTAU28.1 (Apetri et al. 2018)	⁵⁷ EEPGSETSDAKS ⁶⁸ (Fig. 2B)	52-71	2.09
5E2V	AT8 (Malia et al. 2016)	²⁰¹ G pS PG pT PGSR ²⁰⁹	194–211 (pS202, T205)	1.64
5E2W	AT8 (Malia et al. 2016)	²⁰² pS PG pT PG pS R ²⁰⁹ (Fig. 2C,U)	194–211 (pS202, pT205, pS208)	1.50
6XLI	PT3 (Van Kolen et al. 2020)	²¹⁰ SR p TPSLP p TPPTRE ²²² (Fig. 2D)	210-222	2.00
4tqe	TAU5 (Cehlar et al. 2015)	²¹⁵ LPTPPTREPKKVAVVR ²³⁰ (Fig. 2E)	201-230	1.65
4GLR	Ultra-specific Avian Antibody (Shih et al. 2012)	²²⁵ KVAVVR p TPPK ²³⁴ (Fig. 2F)	224-240	1.90
5ZIA	CBTAU-24.1 (Zhang et al. 2018)	²³⁵ SPS pS AKSRL ²⁴³ (Fig. 2G)	221–245 (pT231, pS238)	2.60
6LRA	Tau2r3 (Tsuchida et al. 2020)	²⁷⁵ VQIINK ²⁸⁰ (Fig. 2H)	275-280	1.90
5MO3	DC8E8 (Skrabana et al. 2017)	²⁹⁸ khvpgggs ³⁰⁵ (Fig. 2I,W)	298-311	1.69
6DCW	CBTAU-27.1 (Apetri et al. 2018)	³¹⁰ YKPVDLSKV ³¹⁸ (Fig. 2J)	299-318	2.00
2V17	MN423 (Sevcik et al. 2007)	³⁸⁶ TDHGAE ³⁹¹ (Fig. 2K)	dGAE (297-391)	1.65
6BB4	C5.2 (Chukwu et al. 2018)	³⁹² IVYK pS PV ³⁹⁸ (Fig. 2L)	386-408 (pS396, pS404)	2.10
6DCA	6b2 (Chukwu et al. 2019)	⁴⁰³ TSPRHL ⁴⁰⁸ (Fig. 2M)	379-408	2.59
6DC8	8b2 (Chukwu et al. 2019)	⁴⁰⁴ SPRHL ⁴⁰⁸ (Fig. 2N)	379-408	1.79
6DC9	h4E6 (Chukwu et al. 2019)	⁴⁰³ T pS PRHL ⁴⁰⁸ (Fig. 2O)	386-408 (pS404)	2.99
5DMG	RB86 (Bujotzek et al. 2016)	⁴¹⁹ MVD pS PQLATLAD ⁴³⁰ (Fig. 2P)	416-430	2.50
6H06	CBTAU22.1 (van Ameijde et al. 2018)	⁴¹⁸ DMVD pS PQLAT ⁴²⁷ (Fig. 2T)	404-429	2.63
Binding p	inding partner: 14-3-3			
4FL5	14-3-3σ (Joo et al. 2015)	²¹¹ RTP pS LPTP ²¹⁸ (Fig. 2Q)	210-218(pS214)	1.90
5BTV	14-3-3σ (Joo et al. 2015)	³²³ G pS LG ³²⁶ (Fig. 2R)	320-328(pS324)	1.70
Binding p	Binding partner: Tau peptide – fibril			
	Tau peptide sequence	Type of interface observed*		
2ON9	VQIVYK (Sawaya et al. 2007)	Class 1, face-to-face		1.51
60DG	SVQIVY (Seidler et al. 2019)	Class 1, face-to-face Class 3, face-to-face		1.00
El	ectron crystallography			
5V5B	KVQIINKKLD (Seidler et al. 2018)	Class 1, face-to-face Interface A: formed by VQIIN Interface B: formed by KKLD		1.50
5V5C	VQIINK (Seidler et al. 2018)	Interface B: formed by KKLD Class 4, face-to-back (Fig. 3F)		1.25

61

62

63

64

65

66

Cehlar et al.

repertoire. Indeed, immunization of mice with the 0N4R tau protein isoform has revealed five large regions predominantly populated by tau immunogenic sequences - two in N-terminal projection domain (9-15, 21-27), two in proline rich region (168-174 and 220-228) and one in C-terminal tail (427-438) (Selenica et al. 2014).

Similarly, memory B cells from healthy donors selected against phosphorylated tau peptides identified naturally occurring, somatically mutated tau binding antibodies in 10 these regions (Pascual et al. 2017).

11 The structure of tau in the complexes with naturally 12 evolved binders may conserve preferred conformations of tau 13 linear interaction motifs. Following this line of thinking, we 14 have gathered all tau conformations in the PDB originated 15 from soluble tau complexes (Fig. 1). 3D structures of tau are obtained mainly by X-ray crystallography, but several 16 structures come also from electron crystallography, NMR 17 and single-particle cryo-EM. Some experimental data are 18 19 being corroborated with MD simulations. The principal tau 20 binding partners are antibody Fab fragments; other tau bind-21 ers are 14-3-3s protein, Pin1 WW domain, F-actin, BIN-1, 22 and microtubules. As a complement and for a comparison, 23 we have included also tau-tau complex structures, includ-24 ing cryo-EM structures of tau filaments isolated from brain 25 of individuals who died of a tauopathy. Until April 2021, 26 76 structures containing tau sequence were deposited in

28 Table 2. Tau structures obtained by NMR and cryo-EM 20

PDB. 42 were obtained by X-ray crystallography, 25 with 54 electron microscopy, 5 with solution NMR and 4 with 55 electron crystallography (overview of selected structural 56 depositions is presented in Tables 1 and 2). An ensemble 57 of 995 conformations of tau microtubule binding domain 58 is deposited in the protein ensemble database (Lazar et al. 59 2021) under ID PED00017 (Ozenne et al. 2012). Relative 60 positions of tau peptides observed in complexes with anti-61 body Fab fragments along the 2N4R tau isoform are shown 62 on Figure 1. In the following the tau global fold as well as 63 partial structures will be discussed. 64

Global conformations of tau protein

NMR measurements with full length tau molecule have 68 revealed preferences of short tau segments for transient 69 secondary structures - a-helices (tau residue stretches 114-70 123, 428-437), polyproline II helices (175-184, 216-223, 71 232–239) and β-sheets (86–92, 161–166, 224–230, 274–284, 72 305-315, 336-345) and the global folding was probed by 73 PRE (Mukrasch et al. 2009; Melkova et al. 2019). By ensem-74 ble FRET measurements the C-terminus was shown to be 75 present with high frequency in the proximity of MTBD and 76 40 N-terminal tau residues, which was termed as the "pa-77 perclip" model of tau conformation (Jeganathan et al. 2006). 78 More recently, by single-molecule FRET measurements an 80

Solu	tion NMR		
PDB ID	Binding partner	Tau peptide used	
1I8H	Pin1 WW (Wintjens et al. 2001)	²²⁵ KVSVVR pT PPKSPS ²³⁷ *	
5NVB	F-actin (Fontela et al. 2017)	²⁵⁴ KNVKSKIGSTENLKH ²⁶⁸	
5N5A	F-actin (Fontela et al. 2017)	Tau(254-290)	
5N5B	F-actin (Fontela et al. 2017)	Tau(292-319)	
2MZ7	Microtubules (Kadavath et al. 2015)	Tau(267-312)	
Cryo	D-EM		
	Binding partner	Tau peptide modelled	Resolution (Å)
6CVJ	Microtubules (Kellogg et al. 2018)	²⁵⁶ VKSKIGSTENLK ²⁶⁷ (Fig. 2S)	3.20
6CVN	Microtubules (Kellogg et al. 2018)	K274-V300 (Fig. 2V)	3.90
Tauopathy a	nd in vitro aggregated filaments		
	Filament source and type	Tau peptide modelled	Resolution (Å)
503L	AD PHF (3R+4R) (Fitzpatrick et al. 2017)	V306-F378	3.40
6HRE	AD PHF sporadic (3R+4R) (Falcon et al. 2018b)	²⁷³ GK ²⁷⁴ / ³⁰⁴ GS ³⁰⁵ -E380 ** (Fig. 3A)	3.20
6NWP	CTE type I filament (3R+4R) (Falcon et al. 2019)	K274/S305-R379**	2.30
6GX5	Picks disease (3R) (Falcon et al. 2018a)	K254-F378*** (Fig. 3B)	3.20
6TJX	CBD type II (4R) (Zhang et al. 2020)	K274-E380 (Fig. 3C)	3.00
6QJH	<i>In vitro</i> aggregated 2N4R (snake filaments) (Zhang et al. 2019)	G272-H330 (Fig. 3D)	3.30
6QJQ	In vitro aggregated 2N3R (Zhang et al. 2019)	G272-H330*** (Fig. 3E)	3.70

52 and 4R tau GSVQIVYK at the N-terminal part of the ordered core, *** 3R tau isoforms lack residues 275-305 (numbering according 106

53 human longest full length isoform 2N4R.

4

1

2

3

4

5

6

7

8

9

27

81 82 02

107

65

66

S-shaped model has been obtained, with both termini more 1 2 far apart from each other than from MTBD (Elbaum-Gar-3 finkle and Rhoades 2012). Ion mobility mass spectrometry 4 measurements have shown the presence of highly unfolded 5 as well as folded conformers, but with the latter forming 6 only 2% of the total population (Jebarupa et al. 2018). These 7 minority globular and folded conformers of full-length tau 8 were recently modelled by crosslinking-guided discrete MD simulations (Popov et al. 2019). Fluorescence anisotropy 9 10 measurements with the use of anti-Brownian electrokinetic trap have also shown two families of tau conformations 11 (Manger et al. 2017). 12

Projection domain of tau

13

Monoclonal antibody IPN002 recognises an epitope on 16 17 the extreme N-terminus of tau. IPN002 was humanized 18 to Gosuranemab (BIIB092), an IgG4 antibody, which in-19 hibited tau seeding activity from brain homogenates and 20 transgenic mouse interstitial fluid in cell models. However, 21 it has failed to demonstrate clinical efficacy in progressive 22 supranuclear palsy (PSP) trial and is currently being tested as an AD therapy. The antibody IPN002 was crystallized with 23 tau9-26 peptide and the tau sequence ¹⁵AGTYGLGD²² can 24 be found in the complex structure. The tau peptide forms 25 26 a type I β -turn between residues 16–19, with one hydrogen 27 bond formed between the carbonyl oxygen of G16 and the 28 amide nitrogen of G19, which is further stabilized by one 29 additional hydrogen bond formed between residues A15 30 and G21 (Fig. 2A) (Sopko et al. 2020). Residue Y18 can be 31 phosphorylated and in the phosphorylated form interacts 32 with SH2 domain of tyrosine Fyn kinase, which induces tau 33 trafficking to detergent-resistant membrane microdomains 34 (Usardi et al. 2011).

35 Peptide tau26-44 was proposed as a minimal biologically 36 active moiety of longer 20-22 kDa truncated neurotoxic 37 tau fragment tau26-230 that is accumulating in vivo at AD 38 presynaptic terminals and is present in cerebrospinal fluid 39 (CSF) from AD patients (peptide A in Fig. 1; Borreca et al. 40 2018). Perini and colleagues have performed five 30 ns long 41 molecular dynamics simulations starting from different initial conformations generated by I-TASSER (Yang et al. 42 43 2015). The same procedure has been performed for a control 44 peptide with reverse amino acid sequence. Both peptides obtained mainly coil like structures, turns and bends. Tem-45 porary isolated β -bridges, α -helices and 3_{10} -helices were also 46 47 detected (Perini et al. 2019). SAXS curves were also measured 48 for studied peptides and the ensemble of conformations that 49 give the best fit to the experimental data were extracted from 50 MD runs. The ensemble optimization method EOM with the 51 genetic algorithm GAJOE was used (Bernado et al. 2007). 52 The control peptide was found to exhibit a more compact folding than the tau26-44 peptide. 53

5

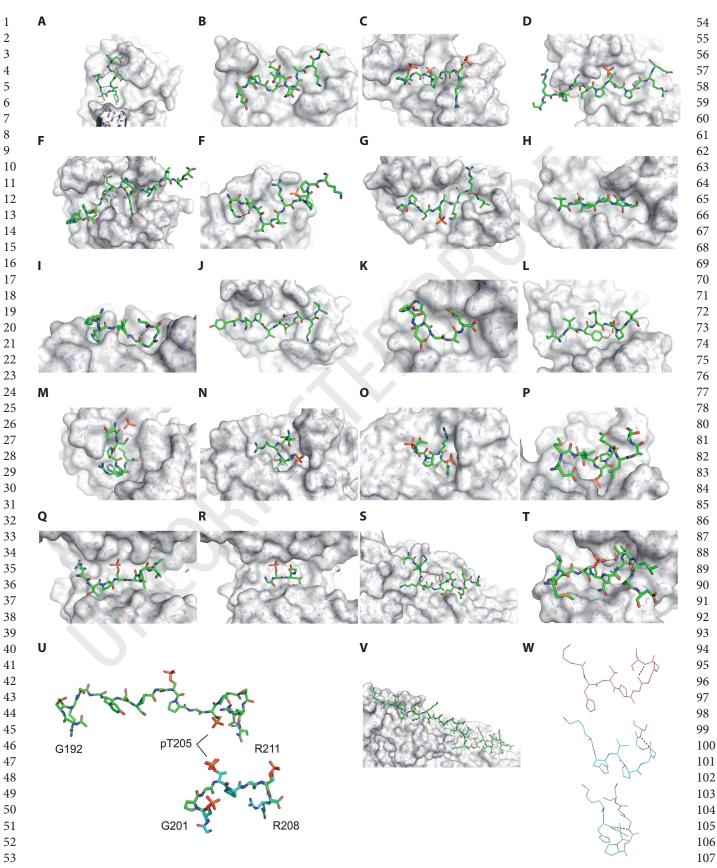
62

63

95

96

97


Structure of tau peptide ⁵⁷EEPGSETSDAKST⁶⁹ from 54 the first N-terminal insert was solved in the complex with 55 antibody CBTAU28.1 Fab (Apetri et al. 2018). Tau peptide 56 forms an α -helix between residues P59 and K67 (Fig. 2B) 57 which is consistent with observed 5% α -helical conformation 58 of this region in the ensembles selected by the ASTEROIDS 59 analysis of NMR chemical shifts (Schwalbe et al. 2014; 60 Melkova et al. 2019). 61

D	1.	. 1	
Pro	line	rich	region

64 Antibody AT8 (Mercken et al. 1992), relevant for staging 65 of AD progression (Braak et al. 2006), was investigated by 66 X-ray crystallography and also by the combination of NMR 67 and MD in its free solution form. Interestingly, AT8 recog-68 nizes multiple phosphorylated sites in the region 199-208. 69 The epitope was originally mapped by ELISA to double 70 phosphorylated peptide pS202/pT205 with cross-reactivity 71 to phospho-pattern pS199/pS202 (Porzig et al. 2007). By 72 73 surface plasmon resonance (SPR), the highest affinity similar to that of PHF-tau was shown for triple phosphorylated tau 74 peptide with phosphorylated residues pS202/pT205/pS208. 75 Phosphorylation pattern was evaluated on 20 amino acid 76 long tau peptides spanning tau residues 195-214. Peptide 77 with phosphorylated residues pS199/pS202/pT205 showed 78 10 times lower affinity than pS202/pT205/pS208 and the 80 double phosphorylated peptide (pS202/pT205) showed 81 27.6 times lower affinity (Malia et al. 2016). AT8 epitope 82 peptide was found in a partially extended conformation 83 with some occurrence of polyproline type II helix second-84 ary structure (Fig. 2C). Combined NMR and MD study 85 proposed an existence of a turn conformation on the 86 C-terminus of AT8 epitope, where the sidechain of pT205 87 flips between interaction with amide proton of G207 and 88 with sidechain of R209 (Fig. 2U) (Gandhi et al. 2015). The 89 NMR spectrum of tau peptide tau192-212 (peptide B in Fig. 90 1; pS202/pT205) has reproduced well that of phosphorylated 91 full length tau protein. The full-length tau and tau fragment 92 TauF5 (tau165-224) were in vitro phosphorylated using 93 94 recombinant CDK2/CycA3 kinase.

Interaction site of tau with 14-3-3 proteins

Tau residue pS214 is involved in the interaction of tau with 98 14-3-3 proteins together with pS324 from MTBD (Joo et al. 99 2015). The 14-3-3 protein family comprises seven isoforms; 100 they exist as homo- or heterodimers and interact mainly 101 with phosphorylated protein partners. 14-3-3 σ was shown 102 to be involved in tubulin stability and neuritic outgrowth in 103 neurons. Tau peptides ²¹¹RTPpSLPTP²¹⁸ and ³²³GpSLG³²⁶ 104 were observed in complexes with 14-3-3σ protein (Fig. 2Q, 105 2R). The peptides are bound in an extended conformation 106 in the central binding channel of 14-3-30 monomer. The full 107

1 length phosphorylated tau protein binds to 14-3-3σ dimer 2 through both mentioned phosphosites forming a complex 3 with 2:1 stoichiometry (14-3-3o:tau) (Neves et al. 2021). The 4 tau peptide with pS214 was the basis for the construction 5 of chimeric inhibitors of 14-3-3 σ /tau interaction that were 6 composed of tau sequence with organic scaffolds fused to 7 residue T217 extending the binding of the inhibitor also to 8 the proximal fusicoccin (14-3-3 σ stabilizer) binding site 9 (Milroy et al. 2015).

10 Phospho-specific antibody PT3 that binds tau phospho-11 rylated at threonine residues 212 and 217 has been generated and was reported to bind AD PHF and phosphorylated 12 recombinant tau with picomolar affinity (Van Kolen et al. 13 2020). The whole tau peptide ²¹⁰SRpTPSLPpTPPTRE²²² 14 15 used for co-crystallization (with acetylated N-terminus) could be modelled in the complex structure. Tau phospho-16 17 peptide has an extended conformation with polyproline II 18 helix character and contains intramolecular hydrophobic 19 contacts (Fig. 2D).

pT217 epitope can be used as an AD biomarker in an
immunoassay to distinguish AD cases from other dementia
cases and healthy controls (Hanes et al. 2020).

Tau sequence 210–230 interacting with BIN1 and tau5 antibody

27 It was shown that tau interacts with C-terminal SH3 do-28 main of BIN1 (Bridging integrator-1) through its sequence 29 210-240 (Sottejeau et al. 2015). BIN1 gene was the first of 30 the genetic determinants for sporadic AD with a clear link 31 to Tau pathology (Chapuis et al. 2013). The model of the 32 complex structure of SH3 domain of BIN1 isoform1 and 33 tau peptide was obtained with docking using HADDOCK 34 (van Zundert et al. 2016) that was driven under defined 35 intermolecular unambiguous restraints from a NOESY 36 spectrum and ambiguous restraints chosen as the residues involved in intermolecular NOEs. Tau peptide 213-229 37 has been modelled (Lasorsa et al. 2018). The ²¹⁶PxxP²¹⁹ 38 consensus motif of Tau peptide is bound into the canonical 39

hydrophobic xP binding pocket of the SH3 domain. The
positively charged tau residues R221 and K224 interact54with negatively charged residues in the n-Src loop of the
specificity zone of BIN1 SH3.57

The conformation of tau peptide ²¹⁵LPTPPTREPK-KVAVVR²³⁰ can be obtained from its complex with Tau5 59 antibody Fab. Its conformation is stabilized by a T-turn motif 60 in the central part of tau epitope, where side chain oxygen 61 of T220 makes a hydrogen bond with main chain amid of 62 E222 (Fig. 2E). This intrachain hydrogen bond stabilizes a V 63 shaped conformation of the peptide (Cehlar et al. 2015). 64

Sequence stretch ²²⁵KVAVVRT²³¹ may be contributing 65 to the formation of PHF and also to microtubule binding. 66 It loses its flexibility measured by solid state NMR upon 67 *in vitro* filament formation (Savastano et al. 2020). It was 68 shown that regions flanking MTBD, including this segment, 69 are required for high affinity binding of tau to microtubules 70 (Mukrasch et al. 2007). 71

Tau conformations around phosphorylated residue T231

The tau conformation around residue T231, recognized also 75 76 by an antibody AT180 used for defining an AD pathological form of phospho-tau, was analysed by several approaches 77 and also by an ultra-specific avian antibody recognizing 78 epitope around pT231. The bond between pT231-P232 80 is amenable for cis-trans isomerization by peptidyl-prolyl 81 isomerase Pin1, where the cis conformation was shown to 82 appear early in the brains of humans with mild cognitive 83 impairment (Nakamura et al. 2012). NMR measurements 84 performed with tau fragment tau208–324 showed that all 85 prolines were for over 90% in the trans conformation (Ahuja 86 et al. 2016). Lyons and co-workers have performed MD 87 simulations of differently phosphorylated tau peptide 225-88 250 (peptide C in Fig. 1) under various conditions (ionic 89 power, phosphate charge) and showed that phosphorylation 90 91 disrupts the β-sheet patterns present at N- and C- termini of non-phosphorylated peptide. The double phosphoryla-92 tion has stabilized formation of a transient a-helix between 93

40 41

23

94 95

72 73

74

Figure 2. Structures of tau peptides bound to antibody Fab fragments, 14-3-30 and microtubules. Structure of tau peptide is shown as 42 96 sticks with green carbon atoms. Structural poses were drawn from PDB depositions with codes: 6PXR, IPN002 Fab with tau A15-D22 43 97 (A); 5ZV3, CBTAU-28.1 with tau E57-S68 (B); 5E2W, AT8 Fab with tau pS202-R209 (C); 6XLI, PT3 Fab with tau S210-E222 (D); 4TQE, 44 98 Tau5 Fab with tau L215-R230 (E); 4GLR, avian antibody Fab with tau K225-K234 (F); 5ZIA, CBTAU-24.1 with tau S235-L243 (G); 6LRA, 45 99 Tau2r3 Fab with tau V275-K280 (H); 5MO3, DC8E8 Fab with tau K298-S305 (I); 6DCW, CBTAU-27.1 Fab with tau Y310-V318 (J); 46 100 2V17, MN423 Fab with tau T386-E391 (K); 6BB4, C5.2 Fab with tau I392-V398 (L); 6DCA, 6b2 Fab with tau T403-L408 (M); 6DC8, 8b2 101 47 fab with tau S404-L408 (N); 6DC9, h4E6 fab with tau T403-L408 (O); 6H06, CBTAU-22.1 Fab with tau D418-T427 (P); 4FL5, 14-3-3σ 102 48 with tau R211-P218 (Q); 5BTV, 14-3-3 σ with tau G323-G326 (R); 6CVJ, microtubule with tau V256-K267 (S); 5DMG, Rb86 fab with 49 103 tau M419-L428 (T); snapshot of the double phosphorylated tau peptide (pS202pT205) from MD simulation (Gandhi et al. 2015; top), 50 aligned conformations of double (pS202pT205) and triple (pS202pT205pS208) phosphorylated tau peptides from complexes with AT8 104 antibody (Malia et al. 2016; bottom) (U); 6CVN, microtubule with tau K274-V300 (V); Line model of tau segment ²⁹⁸KHVPGGGS³⁰⁵ 51 105 52 from the complex with DC8E8 antibody (5MO3, top) and NMR conformations of tau peptide bound to microtubules (2MZ7; state 1, 106 middle; state 2, bottom) (W). Pymol version 1.8.2.1 was used for preparation of structural figures. 107 53

residues A239-T245 (Lyons et al. 2014) that was observed 1 2 previously by NMR on phosphorylated TauF4 (208-324) 3 fragment (Sibille et al. 2012). Molecular ensembles were 4 calculated based on NMR data for non-phosphorylated, 5 doubly phosphorylated (T231/S235) and tetra- phosphoryl-6 ated (T231/S235/237/238) tau peptide 225-246 (Schwalbe et 7 al. 2015) and found that phosphorylation of T231 resulted 8 in the formation of a salt bridge between the phosphate 9 group of T231 and the neighbouring basic side chain of R230. The structure of tau peptide ²²⁵KVAVVRpTPPK²³⁴ 10 from the complex with avian antibody was solved. Tau 11 phospho-peptide adopts a conformation with two sharp 12 13 turns at V228 and pT231 (Fig. 2F). This conformation is 14 stabilized by an intramolecular hydrogen bond between the side chain nitrogen of K225 and the carbonyl oxygen 15 of V226 (Shih et al. 2012). 16

17 The conformation of a phospho-peptide with pS238 was solved in complex with phosphorylation independent anti-18 19 body CBTAU24.1 (the phosphate group points away from 20 the paratope). The peptide adopts an extended conforma-21 tion with a sharp turn from A239 to L243 where only the 22 side chain nitrogen of K240 is able to form intramolecular 23 hydrogen bonds (Fig. 2G) (Zhang et al. 2018).

Microtubule binding domain 26

24

25

27 Two-dimensional Nuclear Overhauser Effect (NOE) spec-28 tra in the absence and presence of MTs were recorded for 29 peptide tau267-312 (Kadavath et al. 2015). The calcula-30 tions with medium and long range contact data (1.8-6.0 Å)31 of MT bound conformations yielded converged hairpin 32 conformations for residues 269-284 and 300-310. The 33 hairpin turn is formed by PGGG motifs and is followed by an extended structure of aggregation-prone hexapeptides $^{275}\rm VQIINK^{280}$ and $^{306}\rm VQIVYK^{311}.$ The calculation 34 35 36 for the peptide in solution did not converge to one major 37 conformer.

38 One of the lowest energy MT-bound conformers stored 39 in PDB shows a similar β -turn stabilized by a main chain 40 hydrogen bond between G302 and S305 as a tau peptide 41 from the complex with DC8E8 antibody (Fig. 2I,W) (Sk-42 rabana et al. 2017). Antibody DC8E8 recognizes truncated 43 tau proteins preferentially to the full length tau proteins, 44 inhibits tau aggregation (Kontsekova et al. 2014b), inhibits internalization of extracellular tau by neurons (Weisova et 45 al. 2019), and its epitope in R2 is the basis for the active AD 46 47 vaccine (Kontsekova et al. 2014a; Novak et al. 2017). DC8E8 48 binds tau sequence motif HXPGGG present in each of its 49 four MTBRs.

50 The conformations of tau segment from R2-R3 interface 51 (295-311, peptide D in Fig. 1) were probed by molecular 52 dynamics, Rosetta modelling (Ovchinnikov et al. 2018) and experimental methods that showed formation of meta-53

stable compact structures between ³⁰⁶VQIVYK³¹¹ and its 54 upstream sequence modulating aggregation propensity, 55 where destabilization of a β -hairpin conformation leads to 56 the aggregation-prone conformation with exposed amyloid 57 58 forming motif (Chen et al. 2019).

Antibody CBTAU27.1 has a common germline origin 59 with the N-terminal antibody CBTAU28.1 (Apetri et 60 al. 2018). It recognizes epitope ³¹⁰YKPVDLSKV³¹⁸ in 61 R3 bordering the PHF6 aggregation prone hexapeptide 62 ³⁰⁶VQIVYK³¹¹. The tau peptide has mainly straight confor-63 mation with possible interaction of sidechains of residues 64 D314 and S316 (Fig. 2J). 65

It was shown by NMR spectroscopy that tau uses several short helical segments for binding to actin (Fontela et al. 2017). α -helical or 3₁₀-helical conformations were identified 68 for tau segments 261-268, 277-283 and 315-318. 69

Structures of sequences from R1 (²⁵⁶VKSKIGSTEN-70 LK²⁶⁷, Fig. 2S), and R2 (274–300, whole R2 sequence with-71 out PGGG, Fig. 2V) bound to the MT surface in extended 72 conformation were obtained using cryo-EM and Rosetta 73 modelling. Tau synthetic construct with four copies of either 74 R1 or R2 replacing the regular MTBD were used to obtain 75 a better resolution (Kellogg et al. 2018). The ensemble of tau 76 region 202-395 bound to microtubule has been obtained 77 using meta inference cryo-electron microscopy (Brotzakis 78 et al. 2020). 80

The binding of tau peptide from R' region to a-tubulin surface has been proved with INPHARMA NMR method (interligand nuclear Overhauser effect (NOE) for pharmacophore mapping). Tau peptide corresponding to residues 368–402 has been used (Kadavath et al. 2018).

From peptide steric zippers to tauopathy filaments

It has been shown that short tau peptides containing se-89 quences ²⁷⁵VQIINK²⁸⁰ or ³⁰⁶VQIVYK³¹¹ can form fibrillar 90 aggregates (von Bergen et al. 2000, 2001). These tau peptide 91 segments have been crystalized in form of peptide filaments 92 which enabled their structure solution. Nanocrystals from 93 peptides VQIINK and KVQIINKKLD were prepared and 94 the structures of fibrils were determined by electron crys-95 tallography (Seidler et al. 2018). Peptides form homosteric 96 zippers (formed by a single sequence) and they are more 97 tightly bound than previously reported VQIVYK zippers 98 (Sawaya et al. 2007; Fig. 3F), because they have higher shape 99 complementarity and burry larger surface areas. Interest-100 ingly, tau K18 construct with ³⁰⁹VY³¹⁰ mutated to IN, thus 101 containing two VQIINK segments, aggregated faster than 102 the wild type construct. Based on the side chain interface 103 between the β -sheets, fibril-capping inhibitors have been 104 generated that were able to inhibit both tau aggregation and 105 the seeding effect of exogenous fibrils (Sievers et al. 2011; 106 Seidler et al. 2018, 2019). 107

81

82

83

84

85

86

87

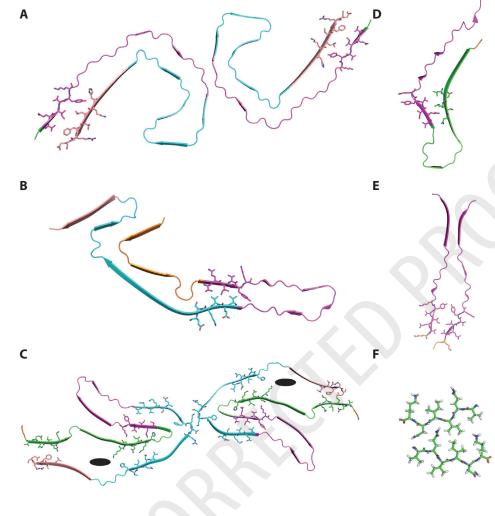


Figure 3. Tau filaments and steric zippers. A. AD PHF fold. Zipper interface residues ³⁰⁶VQIVYK³¹¹ and ³⁷⁴HKLTFRE³⁸⁰ are shown as sticks. Colored according tau MTBRs, R1 orange, R2 green, R3 magenta, R4 cyan, R' salmon. B. Picks narrow fold. Zipper in-terface residues ³⁰⁶VQIVYK³¹¹ and ³³⁷VEVKSE³⁴² are shown as sticks. C. CBD type II (wide) tau fold with sidechains forming four layer interface (³³⁷VEVKSE³⁴², ³⁰⁶VOIVYK³¹¹, ²⁹⁴KDNIKH²⁹⁹, ³⁵⁷LDNITH³⁶²) shown as sticks. Zipper interface of ²⁷⁵VQIINK²⁸⁰ with ³⁷⁶LT-FRE³⁸⁰ is also shown as sticks. Interprotofilament interface-forming segment ³⁴⁶FKDR³⁴⁹ is shown as sticks. PDB 6VH7. Non-proteinaceous density is depicted as black ellipse. D. Fold of in vitro heparin induced 2N4R filament (snake filament). Zipper interface between ³⁰⁶VQIVYK³¹¹ and ²⁸²LDLSN²⁸⁶ is shown as sticks. E. Fold of in vitro heparin induced 2N3R filament with ³⁰⁶VQIVYK³¹¹ interface. F. VQIINK steric zipper interface from protein microcrystal (PDB 5V5C).

Tau peptide VQIINK can be also found in a complex structure with antibody 2r3 Fab (Fig. 2H), generated by immunization with tau peptide 272–283 and inhibiting tau aggregation (Tsuchida et al. 2020).

The above-mentioned interfaces created by short peptides were not observed in cryo EM structures of tau filaments isolated from patients with AD, Picks disease (PiD), corticobasal degeneration (CBD) and chronic traumatic encephalopathy (CTE) (Lippens and Gigant 2019; Scheres et al. 2020). VQIVYK forms a heterosteric zipper interface with corresponding sequence VEVKSE from R4 in PiD and CBD folds (Fig 3). In AD and CTE folds, VQIVYK forms an interface with tau sequence ³⁷⁵KLTF³⁷⁸ from R'. Homosteric but parallel interface of VQIVYK was observed only for the in vitro heparin-induced 3R filaments, which ordered core is composed of parallel parts of R3 from two tau molecules (Fig. 3E). The folds of in vitro aggregated tau filaments dif-fer markedly from patient-derived filament folds. Heparin induced 2N4R and 2N3R tau filaments were characterized

by cryo-EM (Zhang et al. 2019) and 0N4R filaments by solid state NMR (Dregni et al. 2019). 2N4R tau was shown to form four filament types and three of them were solved (snake, twister and jagged filament) to have a core with kinked hairpin fold with stabilized R2 and part of R3 (Fig. 3D, snake filament). In AD and CTE folds, tauopathies with both 3R and 4R tau proteins involved in filaments, repeats R3, R4 and part of R' are stabilized in C-shaped double layered rigid fibril core composed of eight β -sheets with β -helix configuration of chain turn (Fig. 3A) (Fitzpatrick et al. 2017; Falcon et al. 2018b). PiD fold, a 3R tauopathy, consists of nine β -sheets, of which the first and last two create a three-layered motif. The rest of a J-shaped fold contains two layers (Fig. 3B). Residues K254-F378 are stabilized (Falcon et al. 2018a). A 4R tauopathy, CBD, is characterized by compact four-layered fold that extends from K274 to E380. It stabilizes the last residue of R1, repeats R2-R4 and 12 residues form R' (Fig. 3C). In CTE and CBD folds, a channel of non-proteinaceous density has been observed (Falcon et al. 2019; Zhang et

1

2

3

4

5

6

7

8

9

11

12

13

14

15

16

17

18 19

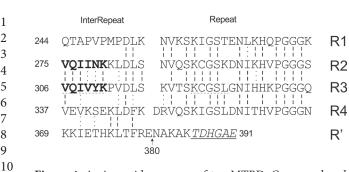


Figure 4. Amino acid sequence of tau MTBD. Conserved and similar amino acids between repeats are shown with dashed and dotted lines respectively. Crystalized epitope of antibody MN423 is underlined and tau stretches contributing to its binding are dashed underlined. Aggregation prone hexapeptides at the beginning of R2 (PHF6*) and R3 (PHF6) are shown in bold. The position of E380, where the recently obtained cryo-EM PHF core structure ends is shown with an arrow.

al. 2020). The mentioned folds are composed of relatively 20 21 conserved β -sheets arranged differently due to the diversity 22 provided by the loop regions.

23 Site-specific ubiquitination could be mapped on the 24 models of AD and CBD filaments that can modulate fibril 25 subpopulations (Arakhamia et al. 2020). The binding sites on AD PHFs and SFs for tau PET ligand APN-1607 have 26 27 been investigated with three possible sites identified, two in 28 β -helix of PHFs and SFs and one in the C-shaped cavity of 29 SFs (Shi et al. 2021).

30 The tau dimer in an AD fold of R3 and R4 (peptides 31 stacked vertically) has been used as a starting conformation 32 for replica-exchange MD simulations in explicit solvent in 33 order to address its conformational ensemble because the 34 dimer formation may be an important step in filament for-35 mation (peptide E in Fig. 1). Tau dimer explored elongated, 36 U-shaped, V-shaped and globular conformations (Derreu-37 maux et al. 2020). The effect of S356 phosphorylation has 38 been also evaluated.

39 Conformational antibody MN423 has been prepared as an imprint of the core of AD PHF (Novak et al. 1991). In the 40 complex structure with MN423 Fab, tau peptide ³⁸⁶TDH-41 GAE³⁹¹ can be observed (Sevcik et al. 2007). MN423 binds 42 only tau proteins truncated at E391. In addition to its crys-43 talized tau epitope, tau sequence stretches ³⁰⁶VQIVYK³¹¹ 44 and ³²¹KCGSL³²⁵ were shown to contribute to MN423-tau 45 interaction (Skrabana et al. 2004; Fig. 4). Sidechain of D387 46 47 forms a hydrogen bond with main chain nitrogen of G389 48 that creates an Asp-turn motif (Fig. 2K).

49

50 C-terminal domain 51

52 Phosphorylated amino acids in the C-terminal domain of tau protein (pS396, pS404, pS413, pS422) are currently be-53

ing tested as targets of passive and active immunotherapy 54 (Li and Gotz 2017). 55

Tau peptide ³⁹²IVYKpSP³⁹⁷ can be found in complex with 56 antibody C5.2 (Chukwu et al. 2018). The strong interaction 57 between phosphate group and sidechain of Y394 (2.5 Å dis-58 tance) locks the tau sequence 394 YKpS 396 in a β -strand con-59 formation (Fig. 2L). CDR H3 of the antibody forms a "nest" 60 for phosphoserine recognition. 61

Antibodies 8B2, 6B2 and 4E6 generated by the immuni-62 zation with the tau peptide 386–408 containing the pS396/ 63 pS404 motif were structurally characterized (Chukwu et al. 64 2019). Antibodies 6B2 and 4E6 were previously shown to be 65 of different specificity and affinity. Administration of 4E6 to 66 htau mice showed improved cognition and reduced soluble 67 phospho-tau, whereas 6B2 was ineffective, despite it has 68 shown higher affinities. 4E6 have also reduced tau spread-69 ing between neurons measured in microfluidic chamber 70 (Congdon et al. 2016). All three antibodies bind well the 71 peptides containing pSer404 and both pSer396/pSer404, but 72 73 they differ in binding the pSer396 containing peptide. This 74 peptide is bound well only by the antibody 6B2, whereas the antibody 8B2 binds this peptide only at high concentrations 75 and antibody h4E6, a humanized version of 4E6, does not 76 recognize this peptide at all. 77

Only the antibody h4E6 was successfully crystallized 78 with peptide containing phosphorylated S404. Tau peptide 80 bound to antibody 8B2 (⁴⁰⁴SPRHL⁴⁰⁸) has a straight linear 81 conformation with a small bend between residues R406 82 and H407 (Fig. 2N). Tau peptide ⁴⁰³TSPRHL⁴⁰⁸ can be 83 observed in complex with antibody 6B2. The C-terminus 84 of tau peptide forms a half helical turn in contrast to 85 the straight conformation seen in the 8B2 complex (Fig. 2M). The conformation of tau peptide 403 TpSPRHL 408 86 87 in complex with antibody h4E6 is similar to that bound 88 to 8B2 but with a bigger backbone bend. Residue pS404 89 has a different orientation relative to the antibody H and 90 L chains as S404 in other two antibody complexes (Fig. 91 2O). In h4E6 complex it points to the antibody heavy 92 chain, which creates a slight helical twist in peptide 93 conformation in the opposite direction as seen in 6B2 94 (Chukwu et al. 2019). 95

Tau peptide ⁴¹⁹MVDpSPQLATL⁴²⁸ can be found in 96 complex with a rabbit antibody Rb86 Fab (Bujotzek et al. 97 2016). Interestingly, the backbone conformation around 98 pS422 is similar to that of peptide with pS404 in complex 99 with h4E6 (backbone RMSD of segments 403 TpSPR406 and 100 ⁴²¹DpSPQ⁴²⁴ is 0.28 Å). Sidechain of residue T427 makes 101 a hydrogen bond with the phosphate group of pS422, creating 102 a turn conformation in the C-terminal part of tau epitope 103 (Fig. 2P). 104

Conformation of similar tau peptide ⁴¹⁸DMVDpSPQ-105 LA⁴²⁶ was solved in complex with antibody CBTAU22.1 106 Fab (van Ameijde et al. 2018). In contrast to the binding of 107

tau phosphopeptide by Rb86, the phosphate group in the complex with CBTAU22.1 is buried in the cavity formed between the antibody heavy and light chains. Tau peptide forms a helical conformation between residues D421 and L425 stabilized by main chain hydrogen bonds (Fig. 2T).

The a-helical conformation was observed for the tau C-terminal peptide 423-441 in TFE containing solution (a-helix spanning residues 426–439) by NMR spectroscopy (Esposito et al. 2000) which is consistent with the data from the NMR measurement with full length tau molecule that showed helical preference for tau C-terminal stretch ⁴²⁸LADEVSASLA⁴³⁷ (Mukrasch et al. 2009).

Conclusions and perspectives

Some conformational preferences observed for the various regions of full-length tau molecule in solution are preserved in the bound conformations of tau in complexes with an-tibodies, where also local hydrogen bonding stabilizing specific conformations can be observed. Efforts to elucidate aggregation-prone conformation of truncated tau proteins (Kovacech and Novak 2010) or aggregation resistant/inert tau conformations (Walker et al. 2012; Mirbaha et al. 2018) may be an important direction for the future research design-ing molecules for identification, inhibition or stabilization of these conformational states. Structural characterization of unstable tau oligomeric states that may represent toxic intermediates on the fibril formation pathway is also needed (Fandrich 2012; Nguyen et al. 2021).

Conflicts of interest. Authors declare no conflict of interest.

Acknowledgments. This work was supported by the Vega grant numbers 2/0145/19 and 02/0163/19. We thank to Dr. Neha S. Gandhi for sharing peptide structure snapshots.

References

- Ahuja P, Cantrelle FX, Huvent I, Hanoulle X, Lopez J, Smet C, Wieruszeski JM, Landrieu I, Lippens G (2016): Proline conformation in a functional tau fragment. J. Mol. Biol. 428, 79-91
 - https://doi.org/10.1016/j.jmb.2015.11.023
- Apetri A, Crespo R, Juraszek J, Pascual G, Janson R, Zhu XY, Zhang H, Keogh E, Holland T, Wadia J, et al. (2018): A common anti-genic motif recognized by naturally occurring human V(H)5-51/V(L)4-1 anti-tau antibodies with distinct functionalities. Acta Neuropathol. Commun. 6, 43
- https://doi.org/10.1186/s40478-018-0543-z
- Arakhamia T, Lee CE, Carlomagno Y, Duong DM, Kundinger S.R, Wang K, Williams D, DeTure M, Dickson DW, Cook CN, et al.
- (2020): Posttranslational modifications mediate the structural
- diversity of tauopathy strains. Cell 180, 633-644 e612

https://doi.org/10.1016/j.cell.2020.01.027 Baggett DW, Nath A (2018): The rational discovery of a tau ag-	54
gregation inhibitor. Biochemistry 57 , 6099-6107	55
https://doi.org/10.1021/acs.biochem.8b00581	56
Bernado P, Mylonas E, Petoukhov MV, Blackledge M, Svergun DI	57
(2007): Structural characterization of flexible proteins using	58
	59
small-angle X-ray scattering. J. Am. Chem. Soc. 129 , 5656-5664 https://doi.org/10.1021/ja069124n	60
Borreca A, Latina V, Corsetti V, Middei S, Piccinin S, Della Valle F,	61
Bussani R, Ammassari-Teule M, Nistico R, Calissano P, et al.	62
(2018): AD-Related N-terminal truncated tau is sufficient to	63
recapitulate in vivo the early perturbations of human neuro-	64
pathology: Implications for immunotherapy. Mol. Neurobiol.	
55, 8124-8153	65
https://doi.org/10.1007/s12035-018-0974-3	66
Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K	67
(2006): Staging of Alzheimer disease-associated neurofibrillary	68
pathology using paraffin sections immunocytochemistry. Acta	69
Neuropathol. 112 , 389-404	70
https://doi.org/10.1007/s00401-006-0127-z	71
Brotzakis YF, Lindstedt PR, Taylor R, Bernardes GJL, Vendruscolo	72
M (2020): A structural ensemble of a tau-microtubule com-	73
plex reveals regulatory tau phosphorylation and acetylation	74
mechanisms, bioRxiv	75
https://doi.org/10.1101/2020.11.10.376285	
Bujotzek A, Lipsmeier F, Harris S.F, Benz J, Kuglstatter A, Georges G	76
(2016): VH-VL orientation prediction for antibody humaniza-	77
tion candidate selection: A case study. MAbs 8 , 288-305	78
https://doi.org/10.1080/19420862.2015.1117720	80
Castellani RJ, Perry G (2019): Tau biology tauopathy traumatic	81
brain injury and diagnostic challenges. J. Alzheimers Dis. 67,	82
447-467	83
https://doi.org/10.3233/JAD-180721	84
Cehlar O, Skrabana R, Dvorsky R, Novak M (2015): Structural	85
insights into the conformation of the proline rich region of	86
neuronal protein tau. Acta Crystallogr. A 71, S46-S47	87
https://doi.org/10.1107/S2053273315099271	88
Chapuis J, Hansmannel F, Gistelinck M, Mounier A, Van Cauwen-	89
berghe C, Kolen KV, Geller F, Sottejeau Y, Harold D, Dourlen P,	90
et al. (2013): Increased expression of BIN1 mediates Alzheimer	90 91
genetic risk by modulating tau pathology. Mol. Psychiatry 18,	
1225-1234	92
https://doi.org/10.1038/mp.2013.1	93
Chen D, Drombosky KW, Hou Z, Sari L, Kashmer OM, Ryder	94
BD, Perez VA, Woodard D.R, Lin MM, Diamond MI, et al.	95
(2019): Tau local structure shields an amyloid-forming motif	96
and controls aggregation propensity. Nat. Commun. 10, 2493	97
https://doi.org/10.1038/s41467-019-10355-1	98
Chukwu JE, Pedersen JT, Pedersen LO, Volbracht C, Sigurdsson EM,	99
Kong XP (2018): Tau antibody structure reveals a molecular	100
switch defining a pathological conformation of the tau protein.	101
Sci. Rep. 8, 6209	102
https://doi.org/10.1038/s41598-018-24276-4	102
Chukwu JE, Congdon EE, Sigurdsson EM, Kong XP (2019):	103
Structural characterization of monoclonal antibodies target-	
ing C-terminal Ser(404) region of phosphorylated tau protein.	105
MAbs 11, 477-488	106
https://doi.org/10.1080/19420862.2019.1574530	107

https://doi.org/10.1080/19420862.2019.1574530

1	Cino EA, Choy WY, Karttunen M (2013a): Conformational biases
2	of linear motifs. J. Phys. Chem. B 117, 15943-15957
3	https://doi.org/10.1021/jp407536p
4	Cino EA, Killoran RC, Karttunen M, Choy WY (2013b): Binding
5	of disordered proteins to a protein hub. Sci. Rep. 3, 2305
6	https://doi.org/10.1038/srep02305
7	Congdon EE, Lin Y, Rajamohamedsait HB, Shamir DB, Krishnas-
8	wamy S, Rajamohamedsait WJ, Rasool S, Gonzalez V, Levenga
9	J, Gu J, et al. (2016): Affinity of Tau antibodies for solubilized
10	pathological Tau species but not their immunogen or insolu- ble Tau aggregates predicts in vivo and ex vivo efficacy. Mol.
10	Neurodegener. 11, 62
	https://doi.org/10.1186/s13024-016-0126-z
12	Davey NE (2019): The functional importance of structure in un-
13	structured protein regions. Curr. Opin. Struct. Biol. 56 , 155-163
14	https://doi.org/10.1016/j.sbi.2019.03.009
15	Derreumaux P, Man VH, Wang J, Nguyen PH (2020): Tau R3-r4
16	domain dimer of the wild type and phosphorylated Ser356
17	sequences. I. In solution by atomistic simulations. J. Phys.
18	Chem. B 124, 2975-2983
19	https://doi.org/10.1021/acs.jpcb.0c00574
20	Dregni AJ, Mandala VS, Wu H, Elkins MR, Wang HK, Hung I,
21	DeGrado WF, Hong M (2019): In vitro 0N4R tau fibrils con-
22	tain a monomorphic beta-sheet core enclosed by dynamically
23	heterogeneous fuzzy coat segments. Proc. Natl. Acad. Sci. USA
24	116, 16357-16366
25	https://doi.org/10.1073/pnas.1906839116
26	Dyson HJ, Wright PE (2005): Intrinsically unstructured proteins
27	and their functions. Nat. Rev. Mol. Cell Biol. 6, 197-208
28	https://doi.org/10.1038/nrm1589
29	Eisenberg DS, Sawaya MR (2017): Structural studies of amyloid
30	proteins at the molecular level. Annu. Rev. Biochem. 86,
	69-95
31	https://doi.org/10.1146/annurev-biochem-061516-045104 Elbaum-Garfinkle S, Rhoades E (2012): Identification of an
32	aggregation-prone structure of tau. J. Am. Chem. Soc. 134,
33	16607-16613
34	https://doi.org/10.1021/ja305206m
35	Esposito G, Viglino P, Novak M, Cattaneo A (2000): The solution
36	structure of the C-terminal segment of tau protein. J. Pept.
37	Sci. 6, 550-559
38	https://doi.org/10.1002/1099-1387(200011)6:11<550::AID-
39	-PSC272>3.0.CO;2-S
40	Falcon B, Zhang WJ, Murzin AG, Murshudov G, Garringer HJ,
41	Vidal R, Crowther RA, Ghetti B, Scheres SHW, Goedert M
42	(2018a): Structures of filaments from Pick's disease reveal a
43	novel tau protein fold. Nature 561, 137-140
44	https://doi.org/10.1038/s41586-018-0454-y
45	Falcon B, Zhang WJ, Schweighauser M, Murzin AG, Vidal R,
46	Garringer HJ, Ghetti B, Scheres SHW, Goedert M (2018b):
47	Tau filaments from multiple cases of sporadic and inherited
48	Alzheimer's disease adopt a common fold. Acta Neuropathol.
49	136, 699-708
50	https://doi.org/10.1007/s00401-018-1914-z
51	Falcon B, Zivanov J, Zhang WJ, Murzin AG, Garringer HJ, Vidal R,
52	Crowther RA, Newell KL, Ghetti B, Goedert M, et al. (2019):
	Novel tau filament fold in chronic traumatic encephalopathy encloses hydrophobic molecules. Nature 568 , 420-423
53	encloses nyurophobic molecules. Ivalure 308 , 420-425

https://doi.org/10.1038/s41586-019-1026-5	54
Fandrich M (2012): Oligomeric intermediates in amyloid forma-	55
tion: structure determination and mechanisms of toxicity. J.	
Mol. Biol. 421 , 427-440	56
https://doi.org/10.1016/j.jmb.2012.01.006	57
Fischer I, Baas PW (2020): Resurrecting the mysteries of big tau.	58
Trends Neurosci. 43 , 493-504	59
https://doi.org/10.1016/j.tins.2020.04.007	60
Fisher CK, Stultz CM (2011): Constructing ensembles for in-	61
	62
trinsically disordered proteins. Curr. Opin. Struct. Biol. 21,	
426-431	63
https://doi.org/10.1016/j.sbi.2011.04.001	64
Fitzpatrick AWP, Falcon B, He S, Murzin AG, Murshudov G, Gar-	65
ringer HJ, Crowther RA, Ghetti B, Goedert M, Scheres SHW	66
(2017): Cryo-EM structures of tau filaments from Alzheimer's	67
disease. Nature 547, 185-190	68
https://doi.org/10.1038/nature23002	69
Fontela YC, Kadavath H, Biernat J, Riedel D, Mandelkow E, Zweck-	
stetter M (2017): Multivalent cross-linking of actin filaments	70
and microtubules through the microtubule-associated protein	71
Tau. Nat. Commun. 8	72
https://doi.org/10.1038/s41467-017-02230-8	73
Gandhi NS, Landrieu I, Byrne C, Kukic P, Amniai L, Cantrelle FX,	74
Wieruszeski JM, Mancera RL, Jacquot Y, Lippens G (2015):	75
A phosphorylation-induced turn defines the Alzheimer's dis-	76
ease AT8 antibody epitope on the tau protein. Angew. Chem.	
Int. Edit. 54, 6819-6823	77
https://doi.org/10.1002/anie.201501898	78
Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA	80
(1989): Multiple isoforms of human microtubule-associated	81
protein-tau-sequences and localization in neurofibrillary tan-	82
gles of Alzheimers-disease. Neuron 3 519-526	83
https://doi.org/10.1016/0896-6273(89)90210-9	84
Hanes J, Kovac A, Kvartsberg H, Kontsekova E, Fialova L, Katina	85
S, Kovacech B, Stevens E, Hort J, Vyhnalek M, et al. (2020):	
Evaluation of a novel immunoassay to detect p-tau Thr217 in	86
the CSF to distinguish Alzheimer disease from other dementias.	87
	88
Neurology 95 , e3026-e3035	89
https://doi.org/10.1212/WNL.00000000010814	90
Jebarupa B, Muralidharan M, Arun A, Mandal AK, Mitra G (2018):	91
Conformational heterogeneity of tau: Implication on intrinsic	92
disorder acid stability and fibrillation in Alzheimer's disease.	93
Biophys. Chem. 241 , 27-37	94
https://doi.org/10.1016/j.bpc.2018.07.005	
Jeganathan S, von Bergen M, Brutlach H, Steinhoff HJ, Mandelkow	95
E (2006): Global hairpin folding of tau in solution. Biochemistry	96
45, 2283-2293	97
https://doi.org/10.1021/bi0521543	98
Joo Y, Schumacher B, Landrieu I, Bartel M, Smet-Nocca C, Jang	99
A, Choi HS, Jeon NL, Chang KA, Kim HS, et al. (2015): In-	100
volvement of 14-3-3 in tubulin instability and impaired axon	101
development is mediated by Tau. FASEB J. 29, 4133-4144	101
https://doi.org/10.1096/fj.14-265009	
Kadavath H, Cabrales Fontela Y, Jaremko M, Jaremko L, Overkamp	103
K, Biernat J, Mandelkow E, Zweckstetter M (2018): The binding	104
mode of a tau peptide with tubulin. Angew. Chem. Int. Edit.	105
57, 3246-3250	106
https://doi.org/10.1002/anie.201712089	107

1	Kadavath H, Jaremko M, Jaremko L, Biernat J, Mandelkow E,	Zidek L (2019): Structure and functions of microtubule as-
2	Zweckstetter M (2015): Folding of the tau protein on micro-	sociated proteins tau and MAP2c: Similarities and differences.
3	tubules. Angew. Chem. Int. Edit. 54 , 10347-10351	Biomolecules 9, 105
4	https://doi.org/10.1002/anie.201501714	https://doi.org/10.3390/biom9030105 Mercken M, Vandermeeren M, Lubke U, Six J, Boons J, Van de
5	Kellogg EH, Hejab NMA, Poepsel S, Downing KH, DiMaio F,	
6	Nogales E (2018): Near-atomic model of microtubule-tau	Voorde A, Martin JJ, Gheuens J (1992): Monoclonal antibodies
7	interactions. Science 360 , 1242-1246	with selective specificity for Alzheimer Tau are directed against
8	https://doi.org/10.1126/science.aat1780	phosphatase-sensitive epitopes. Acta Neuropathol. 84, 265-272
9	Kontsekova E, Zilka N, Kovacech B, Novak P, Novak M (2014a):	https://doi.org/10.1007/BF00227819
	First-in-man tau vaccine targeting structural determinants es-	Milroy LG, Bartel M, Henen MA, Leysen S, Adriaans JM, Brunsveld L, Landrieu I, Ottmann C (2015): Stabilizer-guided inhibition
10	sential for pathological tau-tau interaction reduces tau oligom-	of protein-protein interactions. Angew. Chem. Int. Edit. 54,
11	erisation and neurofibrillary degeneration in an Alzheimer's disease model. Alzheimers Res. Ther. 6 , 44	15720-15724
12	https://doi.org/10.1186/alzrt278	https://doi.org/10.1002/anie.201507976
13		
14	Kontsekova E, Zilka N, Kovacech B, Skrabana R, Novak M (2014b):	Mirbaha H, Chen D, Morazova OA, Ruff KM, Sharma AM, Liu X,
15	Identification of structural determinants on tau protein es-	Goodarzi M, Pappu RV, Colby DW, Mirzaei H, et al. (2018):
16	sential for its pathological function: novel therapeutic target	Inert and seed-competent tau monomers suggest structural origins of aggregation. Elife 7, e36584
17	for tau immunotherapy in Alzheimer's disease. Alzheimers Res. Ther. 6 , 45	https://doi.org/10.7554/eLife.36584
18	https://doi.org/10.1186/alzrt277	Mukrasch MD, Bibow S, Korukottu J, Jeganathan S, Biernat J,
19	Kovacech B, Novak M (2010): Tau truncation is a productive post-	Griesinger C, Mandelkow E, Zweckstetter M (2009): Structural
20	translational modification of neurofibrillary degeneration in	polymorphism of 441-residue tau at single residue resolution.
21	Alzheimer's disease. Curr. Alzheimer Res. 7, 708-716	PLoS Biol. 7, e34
	https://doi.org/10.2174/156720510793611556	https://doi.org/10.1371/journal.pbio.1000034
22	Lasorsa A, Malki I, Cantrelle FX, Merzougui H, Boll E, Lambert	Mukrasch MD, von Bergen M, Biernat J, Fischer D, Griesinger
23	JC, Landrieu I (2018): Structural basis of tau interaction with	C, Mandelkow E, Zweckstetter M (2007): The "jaws" of the
24	BIN1 and regulation by tau phosphorylation. Front. Mol.	tau-microtubule interaction. J. Biol. Chem. 282 , 12230-12239
25	Neurosci. 11	https://doi.org/10.1074/jbc.M607159200
26	https://doi.org/10.3389/fnmol.2018.00421	Nakamura K, Greenwood A, Binder L, Bigio EH, Denial S, Ni-
27	Lazar T, Martinez-Perez E, Quaglia F, Hatos A, Chemes LB, Iserte	cholson L, Zhou XZ, Lu KP (2012): Proline isomer-specific
28	JA, Mendez NA, Garrone NA, Saldano TE, Marchetti J, et al.	antibodies reveal the early pathogenic tau conformation in
29	(2021): PED in 2021: a major update of the protein ensemble	Alzheimer's disease. Cell 149 , 232-244
30	database for intrinsically disordered proteins. Nucleic Acids	https://doi.org/10.1016/j.cell.2012.02.016
31	Res. 49, D404-D411	Neves JF, Petrvalska O, Bosica F, Cantrelle FX, Merzougui H,
32	https://doi.org/10.1093/nar/gkaa1021	O'Mahony G, Hanoulle X, Obsil T, Landrieu I (2021): Phos-
33	Li CZ, Gotz J (2017): Tau-based therapies in neurodegeneration:	phorylated full-length Tau interacts with 14-3-3 proteins via
34	opportunities and challenges. Nat. Rev. Drug. Discov. 16,	two short phosphorylated sequences each occupying a binding
	863-883	groove of 14-3-3 dimer. FEBS J. 288 , 1918-1934
35	https://doi.org/10.1038/nrd.2017.155	https://doi.org/10.1111/febs.15574
36	Lippens G, Gigant B (2019): Elucidating Tau function and dys-	Nguyen PH, Ramamoorthy A, Sahoo BR, Zheng J, Faller P, Straub
37	function in the era of cryo-EM. J. Biol. Chem. 294 , 9316-9325	JE, Dominguez L, Shea JE, Dokholyan NV, De Simone A, et
38	https://doi.org/10.1074/jbc.REV119.008031	al. (2021): Amyloid oligomers: a joint experimental/computa-
39	Lyons AJ, Gandhi NS, Mancera RL (2014): Molecular dynamics	tional perspective on Alzheimer's disease Parkinson's disease
40	simulation of the phosphorylation-induced conformational	type ii diabetes and amyotrophic lateral sclerosis. Chem. Rev.
41	changes of a tau peptide fragment. Proteins 82, 1907-1923	121, 2545-2647
42	https://doi.org/10.1002/prot.24544	https://doi.org/10.1021/acs.chemrev.0c01122
43	Malia TJ, Teplyakov A, Ernst R, Wu SJ, Lacy ER, Liu XS, Vander-	Novak M, Jakes R, Edwards PC, Milstein C, Wischik CM (1991):
44	meeren M, Mercken M, Luo JQ, Sweet RW, et al. (2016): Epitope	Difference between the tau-protein of Alzheimer paired helical
45	mapping and structural basis for the recognition of phospho-	filament core and normal tau revealed by epitope analysis of
46	rylated tau by the anti-tau antibody AT8. Proteins 84, 427-434	monoclonal antibodies-423 and antibodies-7.51. Proc. Natl.
	https://doi.org/10.1002/prot.24988	Acad. Sci. USA 88, 5837-5841
47	Manger LH, Foote AK, Wood SL, Holden MR, Heylman KD, Mar-	https://doi.org/10.1073/pnas.88.13.5837
48	gittai M, Goldsmith RH (2017): Revealing conformational vari-	Novak P, Schmidt R, Kontsekova E, Zilka N, Kovacech B, Skra-
49	ants of solution-phase intrinsically disordered tau protein at the	bana R, Vince-Kazmerova Z, Katina S, Fialova L, Prcina M,
50	single-molecule level. Angew. Chem. Int. Edit. 56, 15584-15588	et al. (2017): Safety and immunogenicity of the tau vaccine
51	https://doi.org/10.1002/anie.201708242	AADvac1 in patients with Alzheimer's disease: a randomised
52	Melkova K, Zapletal V, Narasimhan S, Jansen S, Hritz J, Skrabana	double-blind placebo-controlled phase 1 trial. Lancet Neurol.
53	R, Zweckstetter M, Ringkjobing Jensen M, Blackledge M,	16, 123-134

55

56 57 58

59

60

61

62 63

64

65

66 67 68

69

70

71 72 73

74

75

76 77 78

80

81

82

83 84

85

86

87 88 89

90

91 92 93

94

95

96 97

98

99

100 101 102

103

104

105

106 107

1	https://doi.org/10.1016/S1474-4422(16)30331-3	https://doi.org/10.1074/jbc.RA119.009688
2	Ovchinnikov S, Park H, Kim DE, DiMaio F, Baker D (2018): Protein	Seidler PM, Boyer DR, Rodriguez JA, Sawaya MR, Cascio D, Murray
	structure prediction using Rosetta in CASP12. Proteins 86,	K, Gonen T, Eisenberg DS (2018): Structure-based inhibitors
3	(Suppl. 1) 113-121	of tau aggregation. Nat. Chem. 10, 170-176
4	https://doi.org/10.1002/prot.25390	https://doi.org/10.1038/nchem.2889
5	Ozenne V, Schneider R, Yao MX, Huang JR, Salmon L, Zweckstetter	Selenica MLB, Davtyan H, Housley SB, Blair LJ, Gillies A, Nord-
6	M, Jensen MR, Blackledge M (2012): Mapping the potential	hues BA, Zhang B, Liu J, Gestwicki JE, Lee DC, et al. (2014):
7	energy landscape of intrinsically disordered proteins at amino	Epitope analysis following active immunization with tau
8	acid resolution. J. Am. Chem. Soc. 134 , 15138-15148	proteins reveals immunogens implicated in tau pathogenesis.
9	https://doi.org/10.1021/ja306905s	J. Neuroinflamm. 11, 152
10	Pascual G, Wadia JS, Zhu X, Keogh E, Kukrer B, van Ameijde J,	https://doi.org/10.1186/s12974-014-0152-0
11	Inganas H, Siregar B, Perdok G, Diefenbach O, et al. (2017):	Sevcik J, Skrabana R, Dvorsky R, Csokova N, Iqbal K, Novak M
	Immunological memory to hyperphosphorylated tau in asymp-	(2007): X-ray structure of the PHF core C-terminus: Insight
12	tomatic individuals. Acta Neuropathol. 133 , 767-783	into the folding of the intrinsically disordered protein tau in
13		Alzheimer's disease. FEBS Lett. 581 , 5872-5878
14	https://doi.org/10.1007/s00401-017-1705-y	
15	Perini G, Ciasca G, Minelli E, Papi M, Palmieri V, Maulucci G,	https://doi.org/10.1016/j.febslet.2007.11.067
16	Nardini M, Latina V, Corsetti V, Florenzano F, et al. (2019):	Shi Y, Murzin AG, Falcon B, Epstein A, Machin J, Tempest P, Newell
17	Dynamic structural determinants underlie the neurotoxicity	KL, Vidal R, Garringer HJ, Sahara N, et al. (2021): Cryo-EM
18	of the N-terminal tau 26-44 peptide in Alzheimer's disease	structures of tau filaments from Alzheimer's disease with PET
19	and other human tauopathies. Int. J. Biol. Macromol. 141,	ligand APN-1607. Acta Neuropathol. 141, 697-708
	278-289	https://doi.org/10.1007/s00401-021-02294-3
20	https://doi.org/10.1016/j.ijbiomac.2019.08.220	Shih HH, Tu C, Cao W, Klein A, Ramsey R, Fennell BJ, Lambert
21	Popov KI, Makepeace KAT, Petrotchenko EV, Dokholyan NV,	M, Shuilleabhain DN, Autin B, Kouranova E, et al. (2012): An
22	Borchers CH (2019): Insight into the structure of the "unstruc-	ultra-specific avian antibody to phosphorylated tau protein
23	tured" tau protein. Structure 27 , 1710-1715	reveals a unique mechanism for phosphoepitope recognition.
24	https://doi.org/10.1016/j.str.2019.09.003	J. Biol. Chem. 287 , 44425-44434
25	Porzig R, Singer D, Hoffmann R (2007): Epitope mapping of mAbs	https://doi.org/10.1074/jbc.M112.415935
26	AT8 and Tau5 directed against hyperphosphorylated regions	Sibille N, Huvent I, Fauquant C, Verdegem D, Amniai L, Leroy
27	of the human tau protein. Biochem. Biophys. Res. Commun.	A, Wieruszeski JM, Lippens G, Landrieu I (2012): Structural
28	358, 644-649	characterization by nuclear magnetic resonance of the impact
29	https://doi.org/10.1016/j.bbrc.2007.04.187	of phosphorylation in the proline-rich region of the disordered
	Savastano A, Jaipuria G, Andreas L, Mandelkow E, Zweckstetter M	Tau protein. Proteins 80, 454-462
30	(2020): Solid-state NMR investigation of the involvement of the	https://doi.org/10.1002/prot.23210
31	P2 region in tau amyloid fibrils. Sci. Rep. 10, 21210	Sievers SA, Karanicolas J, Chang HW, Zhao A, Jiang L, Zirafi O,
32	https://doi.org/10.1038/s41598-020-78161-0	Stevens JT, Munch J, Baker D, Eisenberg D (2011): Structure-
33	Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA,	based design of non-natural amino-acid inhibitors of amyloid
34	Apostol MI, Thompson MJ, Balbirnie M, Wiltzius JJ, McFarlane	fibril formation. Nature 475 , 96-100
35	HT, et al. (2007): Atomic structures of amyloid cross-beta spines	https://doi.org/10.1038/nature10154
36	reveal varied steric zippers. Nature 447, 453-457	Skrabana R, Kontsek P, Mederlyova A, Iqbal K, Novak M (2004):
37	https://doi.org/10.1038/nature05695	Folding of Alzheimer's core PHF subunit revealed by mono-
38	Scheres SH, Zhang W, Falcon B, Goedert M (2020): Cryo-EM	clonal antibody 423. FEBS Lett. 568 , 178-182
	structures of tau filaments. Curr. Opin. Struct. Biol. 64, 17-25	https://doi.org/10.1016/j.febslet.2004.04.098
39	https://doi.org/10.1016/j.sbi.2020.05.011	Skrabana R, Filipcik P, Kovacech B, Zilka N, Weisova P, Fialova L,
40	Schwalbe M, Kadavath H, Biernat J, Ozenne V, Blackledge M,	Hanes J, Kralovicova J, Kontsekova E, Barath P, et al. (2017):
41	Mandelkow E, Zweckstetter M (2015): Structural impact of	Flexible recognition of a flexible target: inhibition of tau protein
42	tau phosphorylation at threonine 231. Structure 23 , 1448-1458	oligomerization by DC8E8. Eur. Biophys. J. Biophys. Lett. 46,
43	https://doi.org/10.1016/j.str.2015.06.002	S396-S396
44	Schwalbe M, Ozenne V, Bibow S, Jaremko M, Jaremko L, Gajda	Sopko R, Golonzhka O, Arndt J, Quan C, Czerkowicz J, Cameron
45	M, Jensen MR, Biernat J, Becker S, Mandelkow E, et al. (2014):	A, Smith B, Murugesan Y, Gibbons G, Kim SJ, et al. (2020):
46	Predictive atomic resolution descriptions of intrinsically disor-	Characterization of tau binding by gosuranemab. Neurobiol.
47	dered htau40 and alpha-synuclein in solution from NMR and	Dis. 146 , 105120
48	small angle scattering. Structure 22, 238-249	https://doi.org/10.1016/j.nbd.2020.105120
	https://doi.org/10.1016/j.str.2013.10.020	Sottejeau Y, Bretteville A, Cantrelle FX, Malmanche N, Demiaute
49	Seidler PM, Boyer DR, Murray KA, Yang TXP, Bentzel M, Sawaya	F, Mendes T, Delay C, Alves Dos Alves H, Flaig A, Davies P,
50	MR, Rosenberg G, Cascio D, Williams CK, Newell KL, et al.	et al. (2015): Tau phosphorylation regulates the interaction
51	(2019): Structure-based inhibitors halt prion-like seeding by	between BIN1's SH3 domain and Tau's proline-rich domain.
52	Alzheimer's disease-and tauopathy-derived brain tissue sam-	Acta Neuropathol. Commun. 3, 58
53	ples. J. Biol. Chem. 294, 16451-16464	https://doi.org/10.1186/s40478-015-0237-8

3 of the human tur PHF core domain VQLINK complexed with the Fab domain of monoclonal antibody Ta23. FEBS L 594, 2140-2149 55 5 5.105.8 47, 5129-3134 56 5 5.105.8 47, 5129-3134 56 5 5.105.8 47, 5129-3134 56 5 5.105.8 47, 5129-3134 56 5 5.105.8 47, 5129-3134 56 5 5.105.8 47, 5129-3134 56 5 5.105.8 47, 5129-3134 56 5 5.105.8 47, 5129-5129 57 7 7 57 59 7 58 56 10 10 10 11,130107 10 10 11,131472-4658, 2011.08218.x 110 11 10 11,131472-4658, 2011.08218.x 110 12 10 11,131472-4658, 2011.08218.x 110 12 10 11,131472-4658, 2011.08218.x 110 12 11,131472-4658, 2011.08218.x 110 111,13107 13 11,131472-4658, 2011.08218.x 110 111,13107 14 11,131472-4658, 2011.08218.x 110 111,13107 15 11,1314 111,13107 110 111,13107 16 11,131474 110,1314 111,13107 <td< th=""><th>1 2</th><th>Tsuchida T, Susa K, Kibiki T, Tsuchiya T, Miyamoto K, In Y, Minoura K, Taniguchi T, Ishida T, Tomoo K (2020): Crystal structure</th><th>paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc. Natl. Acad.</th><th>54 55</th></td<>	1 2	Tsuchida T, Susa K, Kibiki T, Tsuchiya T, Miyamoto K, In Y, Minoura K, Taniguchi T, Ishida T, Tomoo K (2020): Crystal structure	paired helical filaments depends on a local sequence motif ((306)VQIVYK(311)) forming beta structure. Proc. Natl. Acad.	54 55
 594, 2140 2149 https://doi.org/10.102/1873-3468.113791 Usardi A, Pooler AM, Secrearm A, Reynolds CH, Derkindern B, Hanger DP, Noble W, Williamson R (2014) Tyrosine phospharylation of au regulates its interactions with localization of run. FEBS 1278, 2927-3937 https://doi.org/10.1111/j.1723-4658.2011.08218.x Uversky VN, Odfildd CJ, Dunker AK (2008). Intrinsically discredered proteins in human diseases introducing the D 2 concept. Anou. Rev. Biophys. 37, 152-264 Namar T, Hoozmans JJ, Steinhacher S, et al. (2018). Enhancement of therapeutic proteinial of a naturalization of extracellulater tau via constraining epitope on pathological tau. Acta Neuropathol. Commun. 6, 59 https://doi.org/10.1186/s40478-018-0562-9 Van Kolen K, Malai TJ, Theonis C, Nanjunda R, Tephyskov A, Erasi R, Wu SJ, Luo J, Borgens J, Taelen M, et al. (2020). HNRS tady on the binding of manine proteoper have selected and intrody of the optimum of hyposphorbhorhroenine peptides. J. Tipper J, 1007-1000-000, H, Rousselot Pailley, P. Buee J, Taelon S, Tanaya T, Jamg Y (2015). The 37 Theory of the analytic peptides. J and the selected and t				56
 https://doi.org/10.1116/1873-3468.13791 Usardi A, Polor AM, Seveream A, Reynolds CH, Derkinder R (2011): Tyrosine phosphorylation faus regulates is interactions with the cellular localization of faus regulates is interactions with the cellular localization of faus regulates is interactions with the cellular localization of faus regulates interactions with the second second	4	•		57
 ⁶ Usardi A, Pooler AM, Seereeram A, Reynolds CH, Derkinderen R, Anderton B, Hanger DP, Noble W, Williamson R, Zully Williamson R, Zully Milliamson M, Zully M, Zully M, Zully M, Zully M, Zully	5			58
P. Anderton B, Hanger DP, Noble W, Williamson R (2011): 9591-9600 9591-9600 Tyrosine phosphorylated sci is interactions is interactions is interactions is interactions in the SIS 1278, 2227-237 9591-9600 9591-9600 Uversky VN, Oldield CJ, Dunker AK (2008): Intrinsically disordered internalization of a stratecillular ratu via 6 9591-9600 9591-9600 Muersky VN, Oldield CJ, Dunker AK (2008): Intrinsically disorder internalization of a stratecillular ratu via 6 9591-9600 9591-9600 Muersky VN, Oldield CJ, Dunker AK (2008): Intrinsically disorder internalization of a stratecillular ratu via 6 9591-9600 9591-9600 Muersky NN, Drobecq H, Sanger A, Nama R, Kanger D, Sanger B, Jarveet H, Sprenger S, Nahar T, Hoozeman J, Steinbacher S, Josephorylated SF, et al. Neuropathol. 9601-970-9 Wintjens R, Waringer J, Nahara P, Housson J, 2008 9611-970-9 Wan Kolen K, Malia TT, Thourama J, Steinbacher S, Manger A, Lonard S, Sanger JA, Wanger A, Kanger A, Hannis CA, Manjunda R, Tephyakov A, First R, Wu SJ, Luo J, Borgers M, Vandermeren M, et al. (2020): The 73 anti-phosphot astaccitrus monological ant. Acta Neuropathol. 9700 9700 Nuergen A, Barghorn S, Li L, Mark A, Biernat J, Mandelkow FJ, 2002 MM, Gourdan J, et al. (2016): The FADDOCK2.22 Web Server: User-friendly integrative modeling of biomolecular complexes. J Mol Biomethica J, Natura K, Server J, Barger J, Junza K, Server J, Barger J, Junza K, Song EJM, Gourdan J, et al. (2016): The FADDOCK2.22 Web Server: User-friendly integrative modeling of biomolecular complexes. J Mol Biomethica J, Strater and the strater and thesci Strater	6			59
 Tyrosine phosphorplation of tuar regulates is interactions with btps://doi.org/10.1111/j.1742-465.2027-2937 btps://doi.org/10.1111/j.1742-465.2011.02818.xt dered proteins in human diseases: introducing the Column dered proteins in human diseases: introducing the D2 concept. Annu, Rev Biophys. 72,155-26 https://doi.org/10.1114/j.annuret.kbiophys.37.032807.125924 van Ameije J, Crespo R, Janson R, Jurazzek J, Siroget B, Vernera M, My,Drobecq H, Rousselot Pailley P, Buee H, Sprengets I, Nahar T, Hoozennan JJ, Steinbacher S, et al. (2018): Enhancement of therapeutic potential of a naturet. k. Wus J, Iao J, Borgers M, Vandermeern M, et al. (2020): Communa. 6, 59 thtps://doi.org/10.1186/s40478-018-052-9 Van Kolen K, Maila TJ, Houruis C, Narjunda R, Tephyakov A, Ernst R. Wu SJ, Luo J, Borgers M, Vandermeern M, et al. (2020): Discovery and functional characterization of hyd a human anti-phospho tau selective monoclonal antibody. J.Azherimes Discovery and functional characterization of hyd a human Atta Review and function of hyd a human Atta Review and function of hyd a human anti-phospho tau selective monoclonal antibody. J.Azherimes Discovery and function of hyd a human Atta antibody. Structure 26, 1626-1634 thtps://doi.org/10.1038/meth.3213 Atta Review B, Jardel K, Schmitz C, Kastriffs PL, Mandelkow E (2000): Assembly of tau protein into Alzheimer Mandelkow E (2000): Assembly of tau protein into Alzheimer Mandelkow E (2000): Assembly of tau protein into Alzheimer Mandelkow E (2000): Assembly of tau protein into Alzheimer Https://doi.org/10.1038/s41356-020-2043-0 Https://doi.org/10.1038/s41356-020-2043-0 Https://doi.org/10.1038/s41356-020-2043-0 Https://doi.o	7			60
 localization of un FEBS J. 278, 2927-2937 bttps://doi.org/10.1111/j.174.26.453.01.0821.8 × Uversky VN, Oldfield CJ, Dunker AK (2008): Intrinsically disor dered proteins in human diseases introducing the D2 concept. Annu. Rev. Boghys. 72.15-24 https://doi.org/10.1146/anurve/biophys.57.032207.125924 van Ameijde J. Cresop R. Janson R., Jurazset S. J. Siregar K. Jerveren M. Sprengers I, Nahar T, Hoozemans JJ, Steinbacher S, et al. (2018): Enhancement of therapeutic potential of a naturality occurring human antbody targeting a phosphorylatel Ser(422). containing eptore on pathological tat. Acta Neuropathol. Commun. 6, 199 https://doi.org/10.1186/s4078-018-0562-9 Van Kolen K, Malia TJ, Theunis C, Nanjunda R, Teplyakov A, Ernst B, Kory A, Star D, Paisson J, Zhang Y (2015): The 73 https://doi.org/10.1186/s40478-018-0562-9 Van Kolen K, Malia TJ, Theunis C, Nanjunda R, Teplyakov A, Ernst B, Karaca F, Melquiond ASI, van Dirk M, de Vries SJ, Bonvin A, Yugor JD. 1186/s40478-0110-074/jbc.M01032200 Van Zuder CCP, Rodrigues J, Trellet M, Schmitz C, Kastritts PL, Karaca F, Melquiond ASI, van Dirk M, de Vries SJ, Bonvin A, Yagor JL, Chara Y, Pascual G, Wadia JS, Koegh E, Hoozemans JJ, Sriegar B, Inganas H, Stoog FLM, Goudsmit J, et al. (2018): Structural Basis for ecognition of a unique epitope by a human anti-tau antibody. Structure 26, 1626-1634 war Zunder CCP. Rodrigues J, Trellet M, Schmitz C, Kastritts PL, Macron B, Murzin AG, Natsubara T, Singer B, Inganas H, Stoog FLM, Outor/S10.1016/j.ints.2015.09.014. war Barder CCP. Rodrigues J, Trellet M, Schmitz C, Kastritts PL, Marzin AG, Matsubara T, Stog P, 481(65-48174) war Zunder CCP. Rodrigues J, Frielder H, Schmitz C, Kastritts PL, Macron B, Murzin AG, Carn J, Crowther RA, Gocdert E, 199, 2010.1016/j.ints.2015.09.014. war Barder CCP. Rodrigues J, Frielder H, Sherk SH, Clou	8		https://doi.org/10.1074/jbc.M111.336107	61
11 https://doi.org/10.111/j.12/4.4653.2011.0218.x Therapeutic antibody targeting antirotubule-binding domain 6 12 Uversky VN. Oldifield (J. Dunker AK (2008): Intrinsically disorded to the D2 concept. Annu. Rev. Biophys. 37, 215-246 masking neuron surface proteogycans. Acta Neuropathol. Commun. 7, 129 14 Annu. Rev. Biophys. 37, 215-246 fms/doi.org/10.118/6/40/78-019-0770-y fms/doi.org/10.118/6/40/78-019-0770-y fms/doi.org/10.118/6/40/78-019-0770-y fms/doi.org/10.118/6/40/78-019-0770-y fms/doi.org/10.118/6/40/78-019-0770-y fms/doi.org/10.118/6/40/78-019-0770-y fms/doi.org/10.018/6/40/78-019-0770-y fms/doi.org/10.018/6/40/78-	9		1	62
 12 Uversky VN, Oldield CJ, Dunker AK (2008): Intrinsicilly disor- dered proteins in human diseases. Introducing the D2 concept. Annu. Rev. Biophys. 37, 215-246 13 https://doi.org/10.1186/40478-019-0477-y 14 https://doi.org/10.1186/40478-019-0470-y 14 https://doi.org/10.106/jistr.2018.08012 14 https://doi.org/10.106/jistr.2018.08012 14 https://doi.org/10.106/jistr.2018.0	10			63
adred proteins in human diseases: introducing the D2 concept. masking neuron surface protocylycans. Acta Neuropathol. Manu, Rev. Biophys. 37, 215-24 masking neuron surface protocylycans. Acta Neuropathol. Manu, Rev. Biophys. 37, 215-24 for protein structure and function in protein structure and function prediction. Manuel, S. Kengh, P. J. Parker, S. et al. for protein structure and function prediction. Manuel, S. Kengh, P. J. Stribacher, S. et al. for protein structure and function prediction. Marker, Mala TJ, Theunis C, Nanjunda R, Tephyakov A, Ernst B. file. J. Parker, S. (2010): Structure 26, 162-1634 Marker, Kongrun, J. Strib, Adv. A., Bernat J. file. J. Parker, S. (2010): Structure 26, 162-1634 Marker M. (2016): The HADDOCK22.2 Web Server: User-friendy integrative modeling of biomolecular complexes. J. Mol. Biol. for scale and function of a ningue epitope by a human fut-tau antbooky. Structure 26, 162-1634 Marker M. Mandelkow E (2000): Assembly of tau protein in from the sen Alzheimer's Marker MA, Marker MA, Marker MA, Marker J. Mandelkow E (2000): Assembly of tau protein into Alzheimer's Mandelkow E (2000): Assembly of tau protein into Alzheimer's Marker MA, First J. Mandelkow E (2000): Assembly of tau protein into Alzheimer's Marker MA, Graphyse MA, First MA, Bernat J, Heberle J, Mandelkow E (2000): Assembly of tau protein into Alzheimer's Marker MA, First MA, Bernat J, Heberle J, Mandelkow E (2000): Assembly of tau protein into Alzheimer's Marker MA, First MA, Mandelkow E (2000): Assembly of tau protein into Alzheimer's Maried Marker MA, Graphyse MA, Marker MA, Marker MA, Marker MA, Marke				64
Annu, Rev. Biophys. 37, 215-246 Commun. 7, 129 https://doi.org/10.1146/snurev.biophys.37, 03287, 125924 Commun. 7, 129 van Ameijde J, Crespo R, Janson R, Jaraszek J, Siregar B, Verven H, Sprengers I, Nahar T, Hoozennas JJ, Steinbacher S, et al. Lippens G, Jandrieu I (2001): HI NNR study on the binding 70 (2018): Enhancement of therapeutic potential of a naturally occurring human antibody targeting a phosphorylated Ser(422) Commun. 7, 129 (2016): The MADDOCK2.2 Wan Kolen K, Malia TJ, Theunis C, Nanjunda R, Teplyakov A, Errist R, Wu SJ, Luo J, Borgers M, Vandermeeren M, et al. (2020): The JADDOCK2.2. Web Server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. TratsSER Suite: protein structure and function prediction. 76 Xan Zundert GCP, Rodrigues J, Trellet M, Schmittz C, Kastritis PL, Karaca E, Melquing of biomolecular complexes. J. Mol. Biol. Structura Baiss for recognition of a unique epitope by a human ant-tau antibody. Structure 26, 1626-1634 Nang W, Tactona G, Marzin AC, Masubara T, Telaton B, Marzin AC, Newell KL, Murzin AG, Matsubara T, Telaton R, Valada R, Zrinzper HJ, Shi Y, Lucut T, et al. (2020): Resembly of tau protein in from-toty enport device and protein a protein a greagent of prior the prior of a directing protocal greagetion of paired helical filaments by enhancing local beta-structure, J. Biol. Chem. 276, 48165-4817 Structura Baiss For recognition of a unique epitope by a human ant-tau antibody. Structura Baiss For recognition of a unique epitope by a human ant-tau antibody. Structura Baiss For recognition of a unique epitope by a human ant-tau antibody. Structura Baiss For recognition of a unique epitope by a human bruct				
https://doi.org/10.1146/anurex.biophys.37.032607.125924 https://doi.org/10.1186/s40478-019-0770-y 66 iversion of the structure of the structure potential of a naturally occurring human antibody targeting a phosphorylated Scr(422) containing epitope on pathological tau. Acta Neuropathol. Commun. 6, 59 Viersion of the structure of the structure potential of a naturally integrate modeling of biomodenal antibody. J. Alzheimers bis, 77, 1397-1416 Yua Kolen K, Mala TJ, Theunis C, Nanjunda R, Teplyakov A, Errist R, Wu SJ, Luo J, Bogrers M, Vanderwerer M, et al. (2020): The 17.01038/meth.3213 76 Yua Zouder GCP, Rodrigues J, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bouvini (10.016/jimb.2015.09.014 Yua Suder GCP, Rodrigues J, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquion ASJ, van Dijk M, de Vries SJ, Bouvini (10.016/jimb.2015.09.014 Yua Suder GCP, Rodrigues J, Trellet M, Schmitz C, Kastritis PL, Marzin AG, Fan J, Crowther RA, Goedert 2, Mandelkow E (2001). Maturinos of tau protein in from tote targerostic agregration of paired hickal filaments by enhancing local beta-structure. J. Biol. Chem. 276, 48165-48174 Yua Suder B, Birmat J, Mandelkow E (2000): Assembly of tau protein into Alzbeimer 276, 48165-48174 Yua Suder B, Birmat J, Mandelkow E (2000): Assembly of tau protein into Alzbeimer 276 Yua Suder B, Birmat J, Heberle J, Mandelkow E (2000): Assembly of tau protein into Alzbeimer 206 Yua Suder 2010 Yua Suder 2010 <td< td=""><td></td><td></td><td></td><td></td></td<>				
 van Ameijde J, Crespo R, Janson R, Jurazze J, Siregar B, Verveen H, MD, Drobecq H, Rousselot-Palley P, Buce (2018): Enhancement of therapeutic potential of a naturally occurring human antibody targeting a phosphorylated Ser(422) containing epitope on pathological tau. Acta Neuropathol. Commun. 6, 59 https://doi.org/10.1186/s40478-018-0562-9 Van Kolen K, Malia TJ, Theunis C, Nanjunda R, Teplyakov A, Ernst R, Wu SJ, Luo J, Borgers M, Vandermeeren M, et al. (2020): The TASESE Stute: protein structure and function prediction. 74 Discovery and functional characterization of hpt 3 humanized at int-phospho tau selective monoclonal antibody. J. Alzheimers Dis. 77, 1397-1416 https://doi.org/10.0138/JAD-200544 van Zmater GCR Rodrigues J. Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin A (2016): The IADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 1428, 720-725 https://doi.org/10.016/j.timb.2015.09.014. von Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow E (2000): Assembly of tau protein into Alzheimer 276, 48165-4817 https://doi.org/10.1016/j.timb.2015.09.014. von Bergen M, Barghorn S, El L, Marx A, Biernat J, Mandelkow E (2000): Assembly of tau protein into Alzheimer 276, 48165-4817 https://doi.org/10.1016/j.the.M105196200 von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow E (2000): Assembly of tau protein into Alzheimer 276, 48165-4817 https://doi.org/10.1016/j.the.M105196200 von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow E (2000): Assembly of tau protein into Alzheimer 276, 48165-4817 https://doi.org/10.1038/sH1586-020-2043-0 https://doi.org/10.1038/sH1586-020-2043-0 https://doi.org/10.1038/sH1586-020-2043-0 https://doi.org/10.1038/sH1586-02				
17 (2018): Enhancement of therapeutic potential of a naturally occurring human antibody targeting a phosphorylated Ser(422) containing epitoge on pathological tau. Acta Neuropathol. 17 (2018): Enhancement of therapeutic potential of a naturally occurring human antibody targeting a phosphorylated Ser(422) containing epitoge on pathological tau. Acta Neuropathol. 18 10 11				
 (2018). Enhancement of interactive potential for a mixing prosphorylated Ser(422) containing epitope on pathological tau. Acta Neuropathol. Commun. 6, 59 https://doi.org/10.1186/s40478-018-0562-9 Van Kolen K, Malia TJ, Theunis C, Nanjunda R, Teplyakov A, Ernst R, Wo SJ, Luo J, Borgers M, Vandermeeren M, et al. (2020): Discovery and functional characterization of pht3 humanized anti-phospho tau selective monoclonal antibody. J. Alzheimers Dis. 77, 1397-1416 https://doi.org/10.0138/nmeth.3213 Zhang H, Zhu XY, Pascual G, Wadia JS, Keogh E, Hoozemans JJ, Sircegar B, Inganas H, Stoop EJM, Goudsmit J, et al. (2018): The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720-725 https://doi.org/10.1016/j.jimb.2015.09.014 von Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow EM, Mandelkow E (2001): Mutations of tau protein inton Alzheimer 276, 48165-48174 Mandelkow E (2000): Assembly of tau protein into Alzheimer 276, 48165-48174 Mandelkow E (2000): Assembly of tau protein into Alzheimer 428 429 420 420 420 420 420 420 420 420 420 421 422 423 424 424 424 424 424 424 424 424 425 426 426 427 427 43 44 44 44 44 44 44 44 44 44 45 46 47 47 48 49 41 428 428 429 420 <				
19 containing epirope on pathological tau. Acta Neuropathol. 20 Commun. 6, 59 https://doi.org/10.1074/jfbc.M010327200 72 20 Van Kolen K, Malia TJ, Theunis C, Nanjunda R, Teplyakov A, Ernst R, Wu SJ, Luo J, Borgers M, Vandermeeren M, et al. (2020): 74 TASSER Suite: protein structure and function prediction. 74 21 Van Kolen K, Malia TJ, Theunis C, Nanjunda R, Teplyakov A, Ernst R, Wu SJ, Luo J, Borgers M, Vandermeeren M, et al. (2020): 74 TASSER Suite: protein structure and function prediction. 74 25 anti-phospho tau selective monoclonal antibody. J. Alzheimers Dis. 77, 1397-1416 Structural basis for recognition of a unique epitope by a human inti-tau antibody. Structure 26, 1626-1634 78 26 A (2016): The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 81 27 Karaca E, Melquind ASJ, van J, Mardelkow E (2001): Mutations of tau protein informoto tagergegation of paired helicial filaments by enhancing local beta-structure. J. Biol. Chem. 78 276, 48165-48174 Mandelkow E (2000): Assembly of tau protein into Alzheimer 90 38 von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein into Alzheimer 90 39 von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow E (2000): Assembly of tau protein into Alzheimer 90 <td< td=""><td></td><td></td><td></td><td></td></td<>				
 Commun, 6, 59 Commun, 6, 59 https://doi.org/10.1186/s40478-018-0562-9 Van Kolen K, Malia TJ, Theunis C, Nanjunda R, Teplyakov A, Errät R, Wu SJ, Luo J, Borgers M, Vandermeren M, et al. (2020): anti-phosphot sus elective monoclonal antibody. J. Alzheimers Dis. 77, 1397-1416 https://doi.org/10.233/1/AD-200544 van Zundert GCR, Rodrigues J, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin A (2016): The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 1428, 720-725 https://doi.org/10.1016/j.jmb.2015.09.014 von Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow EM, Mandelkow E (2001): Mutations of tau protein in fron- totemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J. Biol. Chem. 276, 48165-48174 Mandelkow E (2000): Assembly of tau protein into Alzheimer 400 Secued: May 26, 2021 Fialov B, Vidal R, Garringer HJ, Shi Y, Lkeuchi T, et al. (2020): Received: May 26, 2021 Final version accepted: July 13, 2021 Stager M, Stager M, Mandelkow E (2000): Assembly of tau protein into Alzheimer 41 426 433 44 444 44 444 <l< td=""><td></td><td></td><td></td><td></td></l<>				
11https://doi.org/10.1186/s40478-018-0562-97422Van Kolen K, Malia TJ, Theunis C, Narjunda R, Teplyakov A, ErnstNat. Methods 12, 7-832Wi SJ, Luo J, Borgers M, Vandermeeren M, et al. (2020):Discovery and functional characterization of hpt3 a humanized anti-phospho tau selective monoclonal antibody. J. Alzheimers Dis. 77, 1397-1416Siregar B, Inganas H, Stoop EJM, Goudsmit J, et al. (2018): 7734van Zundert GCP, Rodrigues J, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin A (2016): The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 428, 720-725Zhang W, Falcon B, Murzin AG, Fan J, Crowther RA, Goedert M, Scheres SH (2019): Heparin-induced tau filaments are finaments by enhancing local beta-structure. J. Biol. Chem. 276, 48165-48174 https://doi.org/10.1073/hbc.M105196200 von Bergen M, Briedhoff P, Biernat J, Heberle J, Mandelkow EM 2000): Assembly of tau protein into AlzheimerScience Hay 26, 2021Science Hay 26, 2021340von Bergen M, Briedhoff P, Biernat J, Heberle J, Mandelkow EM 42000): Assembly of tau protein into AlzheimerScience Hay 26, 2021Science Hay 26, 2021341Science Hay 26, 2021Science Hay 26, 2021Science Hay 26, 2021342Science Hay 26, 2021Science Hay 26, 2021343Science Hay 26, 2021Science Hay 26, 2021344Science Hay 26, 2021Science Hay 26, 2021344Science Hay 26, 2021Science Hay 26, 2021345Science Hay 26, 2021Science Hay 26, 2021346Science Hay 26, 2021Science Hay 26, 2021347 <td></td> <td></td> <td></td> <td></td>				
22Van Kolen K, Malin TJ, Theunis C, Nanjunda R, Teplyakov A, Ernst R, Wu SJ, Luo J, Borgers M, Vandermeeren M, et al. (2020): Discovery and functional characterization of hpt3 a humanized anti-phospho tau selective monoclonal antibody. J. Alzheimers Dis. 77, 1397-1416 https://doi.org/10.1033/JAD-200544 van Zundert GCP, Rodrigues J, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiodn ASI, van Dijk M, de Vrise SJ, Borni 4 (2016): The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 4 (2016): The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 4 (2016): The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 4 (2016): The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 4 (2016): Mutations of tau protein in from totemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J. Biol. Chem. Thes://doi.org/10.103/s/41586-020-2043-0 https://doi.org/10.103/s/41586-020-2043-0Novel tau filament fold in corticobasal degeneration. Nature 580, 283-287 https://doi.org/10.103/s/41586-020-2043-0991740091Final version accepted: July 13, 2021939496909496909496909496909596909497909596909697919791919892969991919192919293949394				74
23R, Wu SJ, Luo J, Borgers M, Vandermeeren M, et al. (2020): Discovery and functional characterization ofhpt3 a humanized anti-phospho tau selective monoclonal antibody. J. Alzheimers Dis. 77, 1397-1416https://doi.org/10.1038/nmeth.32137624James H, Stoop EJM, Goudsmit J, et al. (2018): regar B, Inganas H, Stoop EJM, Goudsmit J, et al. (2018): regar B, Inganas H, Stoop EJM, Goudsmit J, et al. (2018): regar B, Inganas H, Stoop EJM, Goudsmit J, et al. (2018): regar B, Inganas H, Stoop EJM, Goudsmit J, et al. (2018): regar B, Inganas H, Stoop EJM, Goudsmit J, et al. (2018): regar B, Inganas H, Stoop EJM, Goudsmit J, et al. (2018): regar B, Inganas H, Stoop EJM, Goudsmit J, et al. (2018): regar B, Inganas H, Stoop EJM, Goudsmit J, et al. (2018): regar B, Inganas H, Stoop EJM, Goudsmit J, et al. (2018): regar B, Inganas H, Stoop EJM, Goudsmit J, et al. (2018): regar B, Inganas H, Stoop EJM, Goudsmit J, et al. (2018): regar B, Inganas H, Stoop EJM, Goudsmit J, et al. (2018): regar B, Inganas H, Stoop EJM, Goudsmit J, et al. (2019): https://doi.org/10.1016/j.str.2018.08.0127621428, 720-725 to temporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J. Biol. Chem. 276, 48165-481748622242433von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow F (2000): Assembly of tau protein into Alzheimer383944439090459090469090479191489293499494409494419494429494 <td< td=""><td></td><td></td><td></td><td>75</td></td<>				75
anti-phospho tau selective monoclonal antibody. J. Alzheimers Dis. 77, 1397-1416Siregar B, Inganas H, Stoop EJM, Goudsmit J, et al. (2018): 78 Structure 3d basis for recognition of a unique epitope by a human anti-tau antibody. Structure 26, 1626-163480 anti-tau antibody. Structure 26, 1626-163479van Zundert GCP, Rodrigues J, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin A (2016): The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol.Zhang W, Falcon B, Murzin AG, Fan J, Crowther RA, Goedert diseases. Elife 8, e43584Structure 36, 1626-163430integrative modeling of biomolecular complexes. J. Mol. Biol.M, Scheres SH (2019): Heparin-induced tau filaments a oplymorphic and differ from those in Alzheimer's and Pick's diseases. Elife 8, e43584Structura 46, 4438431428, 720-725Mandelkow E (2001): Mutations of tau protein in fron- totemporal dementia promote aggregation of paired helicial filaments by enhancing local beta-structure. J. Biol. Chem. 276, 48165-48174 Mandelkow E (2000): Assembly of tau protein into AlzheimerStoctes SH (201-2043-0)34von Bergen M, Priedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein into AlzheimerStoctes SH (201-2043-0)34filaments by enhancing local beta-structure. J. Biol. Chem. Thys://doi.org/10.1038/s41586-020-2043-09035von Bergen M, Priedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein into Alzheimer904195429643974498449845 </td <td></td> <td></td> <td></td> <td>76</td>				76
25Dis. 77, 1397-1416Structural basis for recognition of a unique epitope by a human8027van Zundert GCR Rodrigues J, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, BonvinStructural basis for recognition of a unique epitope by a human8028van Zundert GCR Rodrigues J, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin8129A (2016): The HADDOCK.2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol.8131 428 , 720-725Ms. Scheres SH (2019): Heparin-induced tau filaments are diseases. Elife 8 , e435848530von Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow828431 428 , 720-725Falcon B, Vidal R, Garringer HJ, Shi Y, Ikeuchi T, et al. (2020): Mameltkow E (2001): Mutations of tau protein in fron- totemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J. Biol. Chem. 276 , 48165-48174767631von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein into Alzheimer76904195999942969943999944999945909946904790489049905090519152915291539254925592 <tr< td=""><td>24</td><td></td><td></td><td>77</td></tr<>	24			77
20https://doi.org/10.3233/JAD-200544anti-tau atibody. Structure 26, 1626-163460027van Zundert GCP, Rodrigues J, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin A (2016): The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol. 1428, 720-725anti-tau atibody. Structure 26, 1626-16348130integrative modeling of biomolecular complexes. J. Mol. Biol. integrative modeling of biomolecular complexes. J. Mol. Biol. flaments by enhancing local beta-structure. J. Biol. Chem. 276, 48165-48174 https://doi.org/10.1014/jbc.M105196200Novel tau filament fold in corticobasal degeneration. Nature 580, 283-287 https://doi.org/10.1038/s41586-020-2043-08130von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein into AlzheimerReceived: May 26, 20218240969641969642969643979044969645969646969647904896964496964596964696964790489696499696409641964296439644964596469647964896499640 <td< td=""><td>25</td><td></td><td></td><td>78</td></td<>	25			78
27van Zundert GCP, Rodrigues J, Trellet M, Schmitz C, Kastritis PL, Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin A (2016): The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol.https://doi.org/10.1016/j.str.2018.08.0128130integrative modeling of biomolecular complexes. J. Mol. Biol.428, 720-7258231428, 720-725modeling of biomolecular complexes. J. Mol. Biol.90/morphic and differ from those in Alzheimer's and Pick's8432https://doi.org/10.1016/j.jmb.2015.09.014Won Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow868634EM, Mandelkow E (2001): Mutations of tau protein in fron- totemporal dementia promote agregation of paired helical filaments by enhancing local beta-structure. J. Biol. Chem. Jamg W, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein into Alzheimer8028a0, 283-2879034won Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein into AlzheimerReceived: May 26, 20219334fila wersion accepted: July 13, 202193359699469699479048904990509051905290539054905591569657925896589658965997549654	26			80
28Karaca E, Melquiond ASJ, van Dijk M, de Vries SJ, Bonvin A (2016): The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. J. Mol. BiolZhang W, Falcon B, Murzin AG, Fan J, Crowther RA, Goedert8230integrative modeling of biomolecular complexes. J. Mol. Biol428, 720-725Mthys://doi.org/10.1016/j.jmb.2015.09.014Mthys://doi.org/10.107554/eLife.43584.0408631428, 720-725Mttps://doi.org/10.1016/j.jmb.2015.09.014Stoppymorphic and differ from those in Alzheimer's and Pick's8434EM, Mandelkow E (2001): Mutations of tau protein in fron- totemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J. Biol. Chem. https://doi.org/10.1074/jbc.M105196200Won Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein into AlzheimerReceived: May 26, 20219034Final version accepted: July 13, 2021933494943594963699479048994990409041914292439344944494459046904790489049904090419142914392449244934590469047904890<	27			81
29A (2016): The HADDOCK2.2 Web Server: User-friendly integrative modeling of biomolecular complexes. J. Mol. Biol.M, Scheres SH (2019): Heparin-induced tau filaments are 838330integrative modeling of biomolecular complexes. J. Mol. Biol.M, Scheres SH (2019): Heparin-induced tau filaments are diseases. Elife 8, e435848331428, 720-725MandelkowStife 8, e435848633von Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow E (2001): Mutations of tau protein in fron- totemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J. Biol. Chem. 276 , 48165-48174Mandelkow E (2000): Assembly of tau protein into AlzheimerM, Scheres SH (2019): Heparin-induced tau filaments are diseases. Elife 8, e435848339won Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein into AlzheimerNovel tau filament fold in corticobasal degeneration. Nature 580 , 283-2879040https://doi.org/10.1074/jbc.M105196200Won Persen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein into AlzheimerMethodical filaments are tag and the structure filament are tag and the structure filament are tag and tag				82
31428, 720-725diseases. Elife 8, e435848532https://doi.org/10.1016/j.jmb.2015.09.014diseases. Elife 8, e435848533von Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkowhttps://doi.org/10.7554/eLife.43584.0408634EM, Mandelkow E (2001): Mutations of tau protein in fron- totemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J. Biol. Chem. 276, 48165-48174Novel tau filament fold in corticobasal degeneration. Nature 580, 283-287 https://doi.org/10.1074/jbc.M1051962008930von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein in to AlzheimerReceived: May 26, 2021923493949541959642969943979044959045909146974790489649904090419542964397449545904610479048904910491049104010419542964397449645974610471048104910491050				83
32https://doi.org/10.1016/j.jmb.2015.09.014https://doi.org/10.7554/eLife.43584.0408633von Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow EM, Mandelkow E (2001): Mutations of tau protein in fron- totemporal dementia promote aggregation of paired helica. filaments by enhancing local beta-structure. J. Biol. Chem. 276, 48165-48174 https://doi.org/10.1074/jbc.M10519620078034von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein into Alzheimer808035org/10.1074/jbc.M1051962009080804080808080419192934294949443959699449799994590999046909090479090904897904990909040909041919142929343949644979045909046909047909048909049909040904191429143914492459146914791489149914091 </td <td></td> <td></td> <td></td> <td>84</td>				84
 von Bergen M, Barghorn S, Li L, Marx A, Biernat J, Mandelkow EM, Mandelkow E (2001): Mutations of tau protein in fron- totemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J. Biol. Chem. 276, 48165-48174 https://doi.org/10.1074/jbc.M105196200 von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein into Alzheimer 40 41 42 44 45 46 47 48 49 49 40 41 44 45 46 47 48 49 49 40 40 41 44 45 46 47 48 49 49 49 40 40 41 44 45 46 47 48 49 49 49 40 40 41 44 45 46 47 48 49 49 40 40 40 41 44 45 46 47 48 49 49 40 40 41 44 45 46 47 48 49 49 49 40 40 41 44 45 46 47 48 49 49 49 40 40 41 44 45 46 47 48 49 49 49 40 40 41 44 45 46 47 48 49 49 49 49 40 40 41 41 42 44 45 46 47 48 49 49 49 40 40 41 44 45 46 47 48 49 49				
34EM, Mandelkow E (2001): Mutations of tau protein in fron- totemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J. Biol. Chem. 276, 48165-48174Falcon B, Vidal R, Garringer HJ, Shi Y, Ikeuchi T, et al. (2020): Novel tau filament fold in corticobasal degeneration. Nature 580, 283-2878837https://doi.org/10.1074/jbc.M105196200Novel tau filament fold in corticobasal degeneration. Nature 580, 283-2879038von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein into AlzheimerReceived: May 26, 202192409141954296439744954599469946100471004810049100501005110052100				
35totemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J. Biol. Chem.Novel tau filament fold in corticobasal degeneration. Nature8936276, 48165-48174580, 283-2879037https://doi.org/10.1074/jbc.M1051962009138won Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein into AlzheimerReceived: May 26, 2021924091934195429643974495459946994690471004890491005010051101521015210154101551015610157101581015910150101511015210153101541015510156101571015810159101501015110152101			6	
53 filaments by enhancing local beta-structure, J. Biol. Chem. 580, 283-287 90 36 276, 48165-48174 https://doi.org/10.1038/s41586-020-2043-0 91 37 https://doi.org/10.1074/jbc.M105196200 92 38 von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein into Alzheimer Received: May 26, 2021 92 40 94 94 94 95 41 95 96 97 42 96 97 90 44 95 96 97 45 98 99 96 46 90 90 90 47 90 90 90 48 90 90 90 50 90 90 90 51 90 90 90 52 90 90 90 52 90 90 90 53 90 90 90 54 90 90 90 55 90 90 90 90 <td></td> <td></td> <td></td> <td></td>				
37 276, 48165-481/4 https://doi.org/10.1038/s41586-020-2043-0 91 38 von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Received: May 26, 2021 92 39 Mandelkow E (2000): Assembly of tau protein into Alzheimer Final version accepted: July 13, 2021 93 40 91 94 91 94 41 95 96 96 42 96 97 97 44 95 96 97 45 97 98 99 46 00 90 90 47 00 100 100 48 00 100 100 50 00 100 100 51 00 100 100 52 00 100 100			580, 283-287	
38von Bergen M, Friedhoff P, Biernat J, Heberle J, Mandelkow EM, Mandelkow E (2000): Assembly of tau protein into AlzheimerReceived: May 26, 20219240944195429643974498459946100471004810049100501005110052100			https://doi.org/10.1038/s41586-020-2043-0	
39 Mandelkow E (2000): Assembly of tau protein into Alzheimer Final version accepted: July 13, 2021 93 40 94 41 95 42 96 43 97 44 98 45 99 46 10 47 10 48 10 49 10 50 10 51 10 52 10				
40 94 41 95 42 96 43 97 44 98 45 99 46 10 47 10 48 10 50 10 51 10 52 10				
$\begin{array}{cccc} 41 & & & & & & & \\ 42 & & & & & & \\ 43 & & & & & & \\ 44 & & & & & & \\ 45 & & & & & & & \\ 45 & & & & & & & \\ 45 & & & & & & & \\ 46 & & & & & & & \\ 46 & & & & & & & \\ 47 & & & & & & & \\ 47 & & & & & & & \\ 48 & & & & & & & \\ 49 & & & & & & & & \\ 50 & & & & & & & & \\ 51 & & & & & & & & \\ 52 & & & & & & & & \\ 52 & & & & & & & \\ \end{array}$		Manuerkow E (2000): Assembly of tau protein into Aizhenner	Final version accepted: July 13, 2021	94
43 97 44 98 45 99 46 10 47 10 48 10 49 10 50 10 51 10 52 10				95
44 98 45 99 46 10 47 10 48 10 49 10 50 10 51 10 52 10	42			96
45994610471048104910501051105210	43			97
4610471048104910501051105210	44			98
471048104910501051105210	45			99
48 10 49 10 50 10 51 10 52 10	46			100
49 10 50 10 51 10 52 10				101
50 10 51 10 52 10				102
51 10 52 10				103
52 10				104
				105
55 10				
	55			10/