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Theoretical Search for the Growth-Temperature
Relationship in Plants
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Abstract. In this article we deal with the definition of a new phenomenological
model with physical bases for the response of short-term cell expansion growth to
temperature. Although the interest on both the biomechanical bases of elongation
growth and on temperature responses has a long lasting development in plant bi-
ology and biophysics, yet the question of the mode of actions of temperature is a
very relevant and still open one. The purpose of our paper was not to deal with
all the complexity of the possible effects of temperature on a growing cell but to
concentrate on two more focused questions: i) whether it is possible to specify an
optimal temperature for growth responses all along development by defining some
phenomenological equations for temperature response, ii) can we learn something
from that on the temperature dependence of the cell wall expansion process us-
ing a minimal analytical modelling? To answer both questions we introduce (by
extending Lockhart approach) the notion of temperature by simple thermodynam-
ical reasoning. Assuming incompressibility of water (by the constant molar density
n/V ) we also accounted for the role of osmosis and consequently – the role of
water uptake in growing cell. This approach allowed us (by comparing theoretical
solutions and experimental results) not only to determine the specific (resonance)
temperature (or corresponding absorption energy kBT ∗) of the optimal growth but
also draw conclusions about the cell wall extensibility dependence on temperature
and its evolution in time. A straightforward application of our method to determine
optimum growth temperature for different plant species in a greenhouse practice
(as its simple implication) can also be recommended.

Key words: Cell wall extensibility — Greenhouse — Modified growth equations
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Introduction

The growth process is based on irreversible extension of the whole organism due
to the increase in the quantity and size of cells, the mass of protoplast and cell
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walls (Fogg 1975; Kutschera 2000 and papers cited therein). In the growth of a
coleoptile one can differentiate three basic phases: the initial phase of slow growth,
the intense growth phase and, eventually, the final phase of slow growth. The
dominating length increments in time unit are observed approximately at the mid-
time of growth. However, the (considered in this paper) linear period of intense
growth lasts fairy short and depends on particular plant species.

Biotic and abiotic factors of environment perturb the plant growth (Wright
1966; Trewavas 1991; Edelmann 1995). The external factors that fundamentally
influence plant growth are temperature, light, water and soil factors, pH and atmo-
sphere composition. The non-linear growth dependence on temperature indicates
the fact that with temperature elevation, the intensity of the biochemical reactions
gradually increases, however, the disfunction of enzymes occurs at the high temper-
ature end. The experimental relations between temperature, turgor pressure and
the growth of plant cells were studied by Proseus et al. (2000).

The goal of the present paper was to introduce a phenomenological description
of the temperature dependence on elongation growth and cell wall expansion pro-
cess. The equations derived are adjusted next to the experimental data. We found
in this manner quantitative description of the elongation of maize coleoptiles versus
time parameterized by temperature. The foregoing major consequence of this ap-
proach was the new possibility to provide a fairly good working description of the
essential features of mechanical properties of the cell wall. We must admit, how-
ever, that since the theory is based upon purely physical terms it does not consider
cell wall yielding properties (e.g. elasticity and viscoelasticity) as being dependent
on biochemical reactions involved in cell construction and reorganization during
growth.

Temperature-dependent growth equations

Plant cell development is the result of cell production (the increase in the number of
cells which is beyond the scope of this paper) and cell volume growth. Cell expansion
is dependent on water uptake and on the rheology of cell walls. The regulation of
the cell expansion (under condition of non-limiting hydraulic conductivity) can be
described by the Lockhart equation (Lockhart 1965). Plant cell growth is described
there by the dynamic balance between wall extension, which tends to dissipate
turgor pressure and the water uptake acting to restore it (Cosgrove 1986, 1993).
Lockhart proposed a simple (first order in time) differential equation

1
V

dV
dt
= Φ(P − Y ) (1)

where the left side of the equation is the relative expansion rate (V stands for the
cell volume) which depends linearly on turgor pressure (P ) in excess of a critical
turgor (Y is the turgor threshold that must be exceeded in order for the cell to
expand) linked by a wall extensibility coefficient Φ. The environmental factors
(temperature, humidity, pH, etc.) which considerably affect cell growth rate are not



Search for Growth-Temperature Relationship 127

P V T

Environment

Plant cell

TWater uptake

Figure 1. The “gedanken experiment”. Plant cell is immersed into a surrounding bath
at a constant temperature T . The piston movement reflects both the water flowing into
plant cell interior and its influence onto the change of mechanical properties of the growing
plant cell as well as the temperature dependence.

included in this equation. However, plants do not grow in conditions uncoupled to
the real world. They are always found in a specific surroundings where one of the
most important influencing growth factors is temperature. Therefore, in order to
introduce the notion of temperature (as it is usually done in thermodynamics) we
divided the whole system (the growing cell in the definite environment) into the
investigated sample (here: plant cell) and ‘the rest of the world’ – a thermostat
(environment) which remained at a constant temperature T (Fig. 1). In order
to introduce temperature into Eq. (1) we utilize the state equation in the form:
P (T, V ) = nRT/V where T stands for the absolute temperature (in Kelvin scale).
The n coefficient here ascribes the number of water moles, R stands for the universal
constant1. By assuming the coefficient Φ as time- and temperature-dependent we
receive the following general equation

1 In our phenomenological (physical) model, the movement of a piston in a cylinder
reflects the mechanical features of the cell wall under pressure P (see Fig. 1). However, in
this scenario we are far beyond the oversimplified picture where we interpret the move-
ment of a piston as only reflecting the compressibility/extensibility properties of the water
solution inside the plant cell. In contrary, in such a way we incorporate rather a num-
ber of basic chemical and biochemical processes which accelerate or decelerate growth
in function of temperature (kinetics of chemical reactions, metabolism, photosynthesis
(biomass production), protein conformational change, their disfunction and denaturing).
Because both types of these processes act simultaneously, however, with different intensity
at distinct temperature ranges, one should expect a crossover from one type of behaviour
to the other. Thus, there should exist a specific, well-defined critical temperature T ∗ for
which the growth rate is optimal. By multiplying T ∗ by the Boltzmann constant kBT ∗ we
also receive clear energetic interpretation which is bound with the peak energy absorption
required for biological processes for the optimum growth.
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1
V

dV
dt
= Φ(P (T, V )− Y (T, V )) (2)

and V = V (T, t). Since water does not change significantly its volume under pres-
sure, we can intuitively assume nR/V as constant in time. This indeed means that
the density of water is constant which is a natural consequence of its incompress-
ibility. The fractional n/V as being constant (even though both n and V increase
simultaneously) reflects in a natural way the water uptake by osmotic processes
into plant cell interior (cytoplasm). Since we have P (T, V ) = nRT/V (linear in T )
we may consequently also assume Y = aT , a = constant (since the turgor threshold
is a minimal pressure value which water must exceed to cause growth). The above
equation can be rewritten as

1
V

dV
dt
= Φ(T, t)

(
nR

V
T − aT

)
(3)

Figure 2. Elongation of maize (Zea mays L.) coleoptile segments versus time at eight
different temperatures.

From the experiment (Fig. 2) we have an additional argument that b =
nR

V
−a

> 0 which expresses the fact that plant cell does not contract while growing in the
normal conditions (due to cell turgor). The above equation yields after integration
the following solution

V = V0 exp

(
bT

∫
Φ(T, t)dt

)
= V0 exp

(
b(τ + 273.15)

∫
Φ(T, t)dt

)
(4)
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where V0 = V (t = t0) stands for the initial volume of the cell and T = τ + 273.15
(τ is the temperature in Celsius scale). The above presented result is a general
solution of Eq. (3) for the volume in function of both time and temperature. From
our model calculations, the coefficient Φ(τ, t) could be received. We can adopt a
modified (by a linear factor τ) Lorentz distribution function (the resonance curve)
by writing2

V (τ, t)− V0 = V0
φ0τ√

(τ − τ∗)2 + α2
(5)

(see the comment in the footnote beneath) where we are dealing with three fitting
parameters: the peak height (amplitude) φ0, its half-width α and temperature τ∗

which stands for the optimum (resonance) growth temperature (energy). The first
two parameters in general depend on time. The latter one is time-independent and
can be treated as a characteristic constant parameter for a given species. We stress
that temperature enters the model by the state equation and by the Lorentz-like
function, Eq. (5).

By comparing Eqs. (4) and (5) we receive

V0 exp

(
b(τ + 273.15)

∫
Φ(τ, t)dt

)
= V0

φ0τ√
(τ − τ∗)2 + α2

+ V0 (6)

and finally we arrive formally at

Φ(τ, t)− Φ(τ, t0) = 1
b(τ + 273.15)

∂

∂t
ln

(
φ0τ√

(τ − τ∗)2 + α2
+ 1

)
(7)

Knowing (from the fit to the experimental data) the time dependencies for the
coefficients φ0 and α (linear), we eventually receive the function Φ(τ, t) which
would possibly allow us to draw further conclusions about the cell wall mechanical
properties (e.g. extensibility in function of temperature).

2 Let us justify the choice of such a function: the outlined system (plant cell) behaves
similarly to the most systems where both dissipative and extortive forces are present. In
such systems there always exist a variable which is optimal at certain conditions (like
the resonance frequency ω∗ for the harmonic oscillator). In our case, the factor enforcing
the crossover from growth acceleration to deceleration is temperature τ . One can suspect,
in analogy to the harmonic oscillator, that also in our case there must exist a critical
(resonance) temperature (τ = τ∗). Consequently, elongation may be described by a reso-
nance curve, the Lorentz distribution function (see also Discussion and Fig. 6), however,
modified by a linear factor τ . The latter adjustment is due to the fact that at τ = 0◦C,
growth must cease altogether.
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Materials and Methods

The experiments were carried out with 4-day-old maize plants Zea mays L. grown
on Hoagland’s medium (Hoagland 1948) at 27◦C. Seeds of maize were cultivated in
darkness. Then individual seedlings were transferred to an aerated solution contain-
ing standard micro- and macro-elements and coleoptiles were cut into segments.
The segments were divided into eight groups growing at different temperatures (see
the legend in Fig. 2). Each group was represented by 5 segments. The experiment
was carried out within 7 h, the measurements were taken at every 1 h. Elonga-
tion was measured under microscope. The individual values presented in Fig. 2 are
the averages obtained from ten measurements. The standard deviation error was
estimated as not exceeding 20 µm.

Results

The almost linearly alined points of elongation of maize versus time from authors’
performed experiments are presented in Fig. 2. The cross-sections for three different
times have resulted in elongation versus temperature plots in Fig. 3. Each figure
represents the experimental results for elongation (V − V0) dependence on tem-
perature for three selected times (4, 5 and 6 h) fitted by the Lorentz-like function
(Eq. (5)). The characteristic maximum at τ well below 30◦C is clearly visible in all
cases obtained in the measurement. However, the same characteristic value of tem-
perature (resonance temperature τ = τ∗) we acquire from our model. The latter is
obtained from the fit to the experimental data. We have performed the following
procedure: the Lorentz-like fit with the parameters φ0, α and τ∗ was made for all
given times. These parameters were estimated by the method of non-linear least
square fitting; the non-linear regresion method was based on Levenberg–Marquardt
algorithm. The fit with the best determination coefficient (R2 = 0.997) was cho-
sen (here, in the case of 5 h) – in this case the credibility of the fit was the best,
and the optimum temperature τ∗ was fixed (τ∗ = 26.9 ± 0.2). For all remain-
ing times, the fit was performed with the other two parameters only: φ0 and α
(the value of τ∗ was taken from the case of t = 5 h). Further calculations were
made using the linear regression for the height φ0 and width α (see Fig. 4). By
assuming φ0(t) = A + Bt we have obtained A = 1.0 ± 0.2, B = 26.3 ± 0.5 values
with the determination coefficient R = 0.999; for α(t) = C +Dt we have received
C = 3.71± 0.05 and D = 0.10± 0.01 with R = 0.978 (for the remaining values see
Table 1). One can see that the width α changes slightly in the course of time while
the height φ0 pronouncedly increases. Even though the model we have introduced
is simple, it succesfully reproduces the data obtained in the measurement within
the 5% experimental error (see Fig. 3).

Inserting the calculated coefficients (A, B, C and D) from linear regression
to Eq. (7) we may easily calculate the time derivative ( ∂

∂t in the right side of Eq.
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Figure 3. The elongation of
maize coleoptile segments ver-
sus temperature for three dif-
ferent times (t = 4, 5, 6 h).
The dotted lines represent the
fit to the experimental data
(solid points with error bars).
The parameters φ0 (height), α
(half-width) and τ∗ (optimum
temperature) are estimated by
the method of non-linear least
square fitting. The value of R2

stands for the determination co-
efficient squared.
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Figure 4. Time dependencies of the peak height φ0 and the half-width α coefficients.
The linear increase in both cases is noticeable. The functions φ0(t) and α(t) are estimated
by the linear regression method of least squares.

Table 1. Values of φ0 and α parameters as obtained in the fitting procedure

Time (h) Height φ0 Width α

1 26 ± 2 3.8 ± 0.4
2 53 ± 2 3.9 ± 0.3
3 80 ± 3 4.0 ± 0.3
4 108 ± 5 4.2 ± 0.3
5 137 ± 5 4.3 ± 0.3
6 158 ± 4 4.3 ± 0.3
7 182 ± 5 4.4 ± 0.3

(7)) and thus proceed further with conclusions concerning the cell wall extension
coefficient Φ(τ, t) itself:

Φ(τ, t)− Φ(τ, t0) = 1
b(τ + 273.15)

τ√
(C +Dt)2 + (τ − τ∗)2 + (A+Bt)τ

·
(

B − (A+Bt)D(C +Dt)
(C +Dt)2 + (τ − τ∗)2

) (8)

where Φ(τ, t0) denotes an initial value of extensibility coefficient for a juvenile cell
and the whole function expresses the change of cell wall expansion in the course
of time and its dependence on temperature. It is worthwhile to stress that this
novel equation combines the theoretical predictions with our empirical data (which
enter this equation via fitting constants A–D). We can see from Eq. (8) that the



Search for Growth-Temperature Relationship 133

Figure 5. Model calculations of the cell wall extensibility Φ(τ, t). The diminishing of the
crest height in the course of time t is clearly visible.

extensibility of the cell wall has a resonance form with the peak localization at
τ∗ = 26.9◦C (for details, see Fig. 5) which also stays in good agreement with ex-
perimental results on maize common in the literature. This observation may lead
us to conclusion that, in fact, there exists a specific critical temperature τ∗ (en-
ergy kBT ∗) of the optimum growth which can be estimated with the help of our
model and which, in addition, can reflect the physical properties of the cell wall.
This fact, however, would provide us with a new research tool, which has two basic
functions. Firstly, by starting from experimental data points we can specify the
diagram (plot) for the whole spectrum (range) of temperatures thus enabling us to
predict theoretically the optimum growth temperature for a given species (we can
foresee theoretically the optimum temperature τ∗ of plant cell growth). Secondly,
by having obtained theoretical results (specific values of parameters φ0 and α) in
the particular case (species) one can draw further qualitative and, especially, quan-
titative conclusions (through the Eq. 8) about the normal and critical behaviour of
the cell wall. We also noticed that from the calculated plots of the wall extensibil-
ity Φ(τ, t) against temperature the peak heights of the individual plots decreased
with increasing time. This result remains in agreement with the fact that the plant
cell after the period of intense growth decelerates its rate in the course of time; a
cessation of cell enlargement takes place (cell maturation).

Discussion

Consider plant cell enlargement focussing our attention on biomechanical point of
view. In this context plant cell membrane equipped with ionic and water channels,
ionic pumps and ligand receptors is of the most direct significance. The period of op-
timal growth occurs when cell membrane is in a liquid-crystall (semi-liquid) phase.
In such a state of matter, the endogenous auxin activates H+-ATPase, acidification
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Figure 6. Elongation versus temperature phase diagram. The vertical dashed lines intro-
duce division into three phases at inflection points of the Lorentz-like distribution (where
the second derivative equals zero). In the suboptimal temperature range plasmalemma is
in crystalline phase, in the optimal range – in semi-liquid phase while in the supraoptimal
range – in liquid phase.

of cell walls and, as a result, their loosening. Simultaneously, the K+ ions flow in
through ion channels pulling behind the water molecules (through the reduction
in the potential of the water solution filling up the plant cell interior). However,
at low temperatures we deal with a kind of a phase transition from semi-liquid to
crystalline phase. The diminishing of temperature causes membrane depolarization
and the K+ loss, water out-flow and consequently growth inhibition. Moreover, for
τ ≈ 0◦C, the reservoir of liquid water becomes almost empty because of crystalliza-
tion process into the ice phase. On the other hand, at high temperatures, the phase
transition from the semi-liquid to liquid phases occurs. It causes the malfunction
of ionic and water channels as well as ionic pumps. Effectively, we deal with the
ionic leakage and a secondary water stress, and consequently – growth cessation.
Additionally, under the influence of high temperatures, the auxin receptor proteins
change their conformation and functionality (up to the denaturing), which obvi-
ously causes growth deceleration and eventually its cessation. All these processes
are reflected in the elongation curve (see Fig. 3) and specific division of the phase
diagram (Fig. 6). We believe that such biological arguments justify the choice of the
Lorentz-like distribution for the phenomenological description of plant cell growth
(see also the foot-notes 1 and 2 for physical basis), however, it is obvious that it
should be derived from the first principles.

In this paper we deal with the coaction of temperature and time in plant
cell growth connected with cell wall mechanical properties. We also argue that
the existence of the optimum temperature at which plant cells grow the fastest
can be obtained from our model by fitting the experimental data to the analytical
solutions. Indeed, it is obvious that such an optimum must exist if one observes
slow growth at both high and low temperatures which implicates the high rate
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growth at the crossover region about τ∗. The potential interest of our paper was to
determine this conclusion theoretically and predict the optimum temperature using
elementary thermodynamical mechanisms. The modified growth equations not only
thoroughly reproduced the experimental growth data but also lead to determine
of the optimum (resonance) temperature τ = τ∗ of growth rate. However, another
competitive result of our paper is using elementary thermodynamical mechanisms
for theoretical investigation of the physical properties of the cell wall, namely the
dependence of its extensibility on temperature and its evolution in time. From the
Fig. 5 we can easily observe the damping of cell wall expansion (and consequently
of growth intensity) and that such suppression for the optimum temperature is the
strongest. This in turn is strictly bound with the rheology of the cell wall (through
Eq. (8)) and also results from our thermodynamical approach. We are well aware
that the relation (8) should be proven by data obtained from cell wall elasticity
experiments. However, these difficult to perform experiments requiring dedicated
equipment are inaccessible in our laboratory so that problem of confrontation of
the model with experiment leaves still open to experimentalists.

Besides the factors of external nature like temperature (humidity, etc.), the
growth regulators are of fundamental importance in cell growth and development
(see also Cleland 1986). These substances stimulate or inhibit the processes of
growth. Further study of subsequent particular experiments, where we consider
the case of linear and non-linear response under external perturbation (growth
inhibitors/stimulators introduced at a time t = t1 > t0) in the light of our thermo-
dynamical approach in both cases, has been conducted elsewhere (Pietruszka et al.
2006).

The main contribution of the present paper lies in presenting a new tool
(analytical function) describing actually observed growth-temperature relationship
which can be eventually used in mathematical models of plant growth to express
formally needed particular parameters (characterizing plant properties). The em-
pirical results from elongation measurements should be inserted into the model
equations in order to obtain relevant parameters characterizing, among others, the
optimum growth temperature as well as time and temperature dependence of cell
wall extensibility. The main limitation of our approach is obvious: it does not ac-
count for the role of biochemical reactions involved in cell building process (even
though these are intrinsic in the postulated Lorentz-like distribution). This is, how-
ever, due to the confinement in the model to the physical aspect.
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