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On the Derivation of the Kargol’s Mechanistic
Transport Equations from the Kedem–Katchalsky
Phenomenological Equations

G. Suchanek

Świętokrzyska Academy, Institute of Physics, Kielce, Poland

Abstract. In the present article, it was demonstrated that – by starting from the
so-called adjusted Kedem–Katchalsky (KK) phenomenological equations (Sucha-
nek et al. 2004), i.e. the equations:

Jv = Lp∆P− LpD∆Π

JD = −LDp∆P+ LD∆Π

it is possible to derive practical transport equations (for the volume flow and the
solute flow) in the form of the Kargol’s mechanistic transport equations (Kargol
and Kargol 2000, 2001, 2003a,b,c, 2004; Kargol 2002).

On this basis, it has been found that the KK thermodynamic formalism for
membrane transport (practical equations) is in general identical with the mecha-
nistic equations for membrane transport.
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Introduction

In order to describe substance transport across membranes, since the late 1950’s and
early 1960’s, Kedem–Katchalsky (KK) practical thermodynamic equations (Kedem
and Katchalsky 1958; Katchalsky and Curran 1965) have been widely used. These
equations have the following forms:

Jv = Lp∆P− Lpσ∆Π (1a)

js = (1− σ)c̄sJv + ω∆Π (1b)

in which Jv, js are flows; and Lp, σ, ω are coefficients (of filtration, reflection and
diffusive permeability of the solute); ∆P and ∆Π are mechanical and osmotic pres-
sure differences; and c̄s is the mean concentration of the solution.
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The assumption is that they apply to homogeneous membranes in terms of
transport properties because in the KK formalism one does not go deep into the
membrane microscopic structure. Yet, as far as research is concerned, we deal with
porous membranes most frequently. These membranes have specific pores (chan-
nels) which are permeable to the solvent (water) and certain solutes.

In recent years, several works (Kargol and Kargol 2000, 2001, 2003a,b,c, 2004;
Kargol 2002) have been published, in which these membranes have been divided
into homogeneous and heterogeneous. It has been assumed that a membrane is
homogeneous if its pores do not vary in terms of their cross-section radiuses. Mem-
branes with varying pore cross-section radiuses are to be treated as heterogeneous
in terms of transport properties.

It is not difficult to see that the above KK equations apply to homogeneous
porous membranes. In order to demonstrate this, let us assume that the condition
∆P = |−σ∆Π| is satisfied. Then Jv = 0. In this situation, there are also no volume
flows in individual pores of the membrane. This means that the term ω∆Π of Eq.
(1b) formulates the diffusive solute flow. If ∆P �= |−σ∆Π|, then – apart from the
diffusive flow ω∆Π – there occurs also the convective flow (1−σ)c̄sJv. The matter
becomes clearly more complicated when Eq. (1b) is applied to heterogeneous porous
membranes. It is here that we arrive at a state in which, at ∆P = |−σ∆Π|, the
volume flow Jv = 0. Yet now, in the individual pores of the membrane, there
will exist volume flows varying in terms of their value and direction. This means
that the term ω∆Π is now not the term to formulate the diffusive solute flow only.
Moreover, at ∆P �= |−σ∆Π|, also the term (1−σ)c̄sJv does not formulate the solute
convective transport only. A difficult situation has arisen, in which it is possible
to assume that the KK equation for the flow js does not apply to heterogeneous
porous membranes, and it was to these membranes that it was mostly applied.

Under the circumstances, Kargol and Kargol (2000, 2001, 2003a,b,c, 2004) have
recently derived, on the basis of mechanistic considerations, some new equations for
membrane transport. These have been called mechanistic equations, and treated
by their authors as alternative to the KK transport equations.

C2  
 
P2  

C1 
 
P1 

0          ∆x                      x 

M 

Figure 1. Membrane system. M, membrane; C1, C2, concentrations; P1,P2, mechanical
pressures; ∆x, membrane thickness; C2 > C1, P2 > P1.
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The alternative nature of mechanistic equations resulted, primarily, from the
fact that these equations apply both to porous homogeneous and heterogeneous
membranes.

In the present article, we first present the idea of the derivation of the so-
called adjusted phenomenological KK equations and outline mechanistic model
for membrane transport. Next, we demonstrate that – when starting from these
adjusted phenomenological equations (Suchanek et al. 2004) – it is possible to arrive
at transport equations for the volume flow and the solute flow in the form of the
Kargol’s mechanistic transport equations. On this basis, in the present article, we
shall also refer to selected aspects of mutual equivalence of the KK formalism and
the Kargol’s mechanistic description.

On the KK derivation procedure for phenomenological transport equations

The starting point in the KK derivation procedure for phenomenological equations
is the membrane system shown in Fig. 1 and the dissipation function given by the
formula (Kedem and Katchalsky 1958; Katchalsky and Curran 1965):

Φ =
n∑

i=1

J̄i · grad (−µi)

in which J̄i is the volume flow, and µi is the chemical potential.
Under stationary conditions, at every point of the membrane, we have J̄i =

const.
In order to determine the dissipation function Φ∆x for the membrane of thick-

ness ∆x, the above expression must be integrated. Then we obtain:

Φ∆x =

∆x∫
0

Φdx = Φ =

∆x∫
0

n∑
i=1

J̄i · grad (−µi)dx =
n∑

i=1

Ji∆µi.

At this juncture, Kedem and Katchalsky (1958) decided to abandon vector notation
because all gradients and flows in the system are directed along the x axis.

Consequently, they obtained the following phenomenological equations:

Jv = Lp∆P+ LpD∆Π (2a)

JD = LDp∆P + LD∆Π (2b)

where Lp, LpD, LDp, LD are coefficients; ∆P and ∆Π are mechanical and osmotic
pressure differences.

On the basis of these equations, they arrived at the following practical trans-
port equations (Eqs. (1a) and (1b)), i.e.:

Jv = Lp∆P− Lpσ∆Π

js = ω∆Π+ (1− σ)c̄sJv
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In order for the equation for the flow Jv to have the above-presented notation,
i.e. a notation adequate to the system as presented in Fig. 1, they had no alternative
but to adopt the definition of the reflection coefficient as proposed by Staverman:

σ = −LpD

Lp
(3)

in which LpD is a negative value (LpD < 0).
However, if vector notation is not abandoned for the flows and forces, then the

following adjusted phenomenological equations (Suchanek et al. 2004) are obtained:

Jv = Lp∆P− LpD∆Π (4a)

JD = −LDp∆P+ LD∆Π (4b)

in which LpD = LDp ≥ 0.
Now, in order to arrive at Eqs. (1a) and (1b) as equations written in accordance

with the system presented in Fig. 1, it suffices to adopt the following adjusted
definition of the reflection coefficient (Suchanek et al. 2004):

σ =
LpD

Lp
(5)

in which the coefficient LpD is now greater than zero.
In the following part of this article, it was demonstrated that on the basis

of these adjusted phenomenological equations it is also possible to arrive at the
Kargol’s mechanistic equations for membrane transport.

Mechanistic model for membrane transport and its description

In order to present the foundation of the Kargol’s mechanistic model for membrane
transport (Kargol and Kargol 2000, 2001, 2003a,b,c, 2004; Kargol 2002), we shall
begin our considerations from the membrane system, presented schematically in
Fig. 2.

In this system, the heterogeneous porous membrane M (whose pores vary
in their cross-section radiuses (r) separates two compartments (A and B) which
contain non-electrolytic solutions of the same solute of concentrations C1 and C2
(C1 < C2). These solutions are under the hydrostatic pressures P1 and P2 which
satisfy the relation: P1 < P2.

Let us assume, as a model, that the heterogeneous porous membrane has a
statistical number N of cylindrical pores permeable to the solvent (water) and
perpendicular to the surface.

To facilitate our considerations, let us assume that the pores in the mem-
brane M have been vertically arranged in a line which starts (at the top) from the
pores with the smallest radiuses rmin1 , and ends with the largest pores rmaxN (at the
bottom). It must be stressed here that this arrangement serves only to illustrate
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Figure 2. System with heterogeneous porous membrane. A, B, compartments; M, mem-
brane; m, stirrers; C1, C2, concentrations; P1,P2, mechanical pressures; Jva and Jvb, vol-
ume flows which permeate across Part (a) and Part (b) of the membrane; Jvwa = Jva

and Jvwb, solvent flows; Jvsd and Jvsk, solute volume flows (diffusive and convective);
C2 > C1, P2 > P1.

the problem and is not reflected in the model membrane structure. In a typical
membrane of this type, individual pores are randomly distributed.

For this membrane, it is possible to find such a solute s with the molecule
radius rs that the following relation will be satisfied:

rmin1 = rw < r2 . . . < rs < . . . < rmaxN

in which rw is the radius of solvent (water) molecules.
In this situation, the membrane M may be divided into Part (a) containing a

certain number na of small pores, contained within the interval from r1 = rw to
rs, and Part (b) containing nb = N − na of large pores, which are found in the
interval from rs to rmaxN . It is easy to see that the pores na will constitute a total
barrier for the molecules of the solute s. These will then be semi-permeable pores.
Therefore, they may be assigned the reflection coefficient amounting to σa = 1.

The pores nb, in turn, which are permeable to both water and the solute s are to
be assigned the reflection coefficient σb = 0. Following this line of reasoning, Kargol
and Kargol (2000, 2001, 2003a,b,c, 2004) and Kargol (2002) have put forward a
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proposal concerning the local formulation of the reflection coefficient. It postulates
that an individual membrane pore may adopt values of the reflection coefficient σp

amounting to either σp = 1 or σp = 0. The values of this parameter may not be
contained in the interval of 0 < σp < 1.

In the light of the above considerations, the membrane M (as a set of N pores
permeable to water) will have the reflection coefficient σ = 1 when all pores are
impermeable to the solute s. This will then be a semi-permeable membrane. On
the other hand, when all the pores N are permeable to the solute s, its reflection
coefficient will amount to σ = 0. This membrane ought to be treated as permeable
(non-selective).

If a certain number na of the membrane pores are semi-permeable and the
remaining pores nb = N − na are permeable to the solute s, the membrane will be
selective. Its reflection coefficient will be contained in the interval of 0 < σ < 1.
This type of selective membrane has been fitted into the system presented in Fig. 2.

In view of the above, it will be seen clearly that (given the existence, on the
membrane M, of the osmotic-pressure difference ∆Π = RT (C2 − C1), where R
is the gas constant, T is the temperature, and of mechanical-pressure difference
∆P = P2 − P1) the volume flow will be generated within the pores na:

Jva = Jvwa = Lpa∆P− Lpa∆Π (6)

where Jva = Jvwa is in fact the osmotic solvent flow (if |∆P| < |−∆Π|), and Lpa

represents the filtration coefficient of the pores na (i.e. Part (a) of the membrane).
In the pores nb of the membrane (i.e. within its Part (b) with the filtration

coefficient Lpb), the volume flow Jvb given by the following formula will permeate:

Jvb = Lpb∆P (7)

since σb = 0.
The above statements have provided the basis for the derivation of the follow-

ing transport equations by Kargol and Kargol (2000, 2001, 2003a,b,c, 2004) and
Kargol (2002):

Jv = Lp∆P− Lpσ∆Π (8)

and
js = ωd∆Π+ (1− σ)c̄sLp∆P (9)

These equations (in a manner analogous to the KK equations) formulate the volume
flow Js and the solute flow js as a function of the pressure differences ∆P and ∆Π.

The parameters Lp (filtration coefficient), σ (reflection coefficient) and ωd

(which is the coefficient of diffusive solute permeability) occurring in these equa-
tions are thus formulated:

Lp = Lpa + Lpb (10)

σ =
Lpa

Lp
(11)
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and
ωd = (1 − σ)Lpc̄s (12)

where Lpa are Lpb are filtration coefficients of Part (a) and Part (b) of the membrane
M, and c̄s is mean concentration.

The derivation procedure for mechanistic transport equations on the basis of the
adjusted KK phenomenological equations

Considering the derivation of the membrane transport equations in the form of
mechanistic equations (i.e. Eqs. (8) and (9)) on the basis of the adjusted KK
phenomenological equations (i.e. Eqs. (4a) and (4b)), let us consider the membrane
system presented in Fig. 2.

As has been stated above, for the membrane M of this system, it is possible
to find such a solute s with the molecule radius rs which will satisfy the relation:
r1 < rs < rN . In view of that, this membrane may be divided into Part (a) and
Part (b). Part (a), which contains na pores of radiuses r ≤ rs (cf. Fig. 2), may
necessarily be permeated by the solvent only. On the other hand, across Part (b)
of the membrane which contains nb pores of radiuses r > rs, both the solvent and
the solute s permeate.

The above membrane may in fact be treated formally as two joined parallel
membranes (a) and (b) with varying filtration coefficients Lpa and Lpb (respec-
tively).

Because only the solvent permeates across Part (a) of the membrane, it is
a semi-permeable membrane. It is obvious that for this membrane ∆P = ∆Π, if
Jva = 0. In view of the above, in accordance with Eq. (4a), the following equality
must be satisfied: Lpa = LpDa, where LpDa is the osmotic permeability coefficient
for Part (a) of the membrane.

However, because the substance does not diffuse across the pores r < rs, the
diffusive flow of the substance in Part (a) of the membrane is equal to zero.

Eqs. (4a) and (4b) for Part (a) of the membrane are then reduced to the
following:

Jva = Lpa(∆P−∆Π) (13a)

and
JDa = 0 (13b)

On the other hand, Part (b) is permeable both to the solute and the solvent.
In this case, cross coefficients (related to membrane selectivity with respect to the
solvent and the solute) satisfy the relation: LpDb = LDpb = 0 (which shall be
demonstrated below).

In view of this, for Part (b) of the membrane, in accordance with Eqs. (4a)
and (4b), we obtain:

Jvb = Lpb∆P (14a)

JvD = LDb∆Π (14b)
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Hence, due to the equality:
Jv = Jva + Jvb (15)

because of the equations of expressions (13a) and (14a), we obtain:

Jv = (Lpa + Lpb)∆P− Lpa∆Π (16)

With the introduction of the following:

Lp = Lpa + Lpb (17a)

σ =
Lpa

Lp
(17b)

Eq. (16) may be written as

Jv = Lp∆P− Lpσ∆Π (18)

This equation has the same form as Eq. (7a). Moreover, the expression (17b) defines
the reflection coefficient σ in a manner identical to that described in articles (Kargol
and Kargol 2000, 2001, 2003a,b,c, 2004; Kargol 2002).

The mechanistic equation for the pure solute flow js

The total diffusive flow JD of the solute s across the membrane M (Fig. 2) may be
formulated in the following obvious expression:

JD = JDa + JDb (19)

in which JDa and JDb are diffusive flows which permeate across Part (a) and Part
(b) of the membrane.

Yet, in view of formulas (13b) and (14b), the above equation will take the
following form:

JD = LDb∆Π (20)

If starting from the adjusted phenomenological equations KK (4a) and (4b),
this flow may be formulated in the relation (Kedem and Katchalsky 1958; Katchal-
sky and Curran 1965):

Jv + JD ≈ JwV̄w + JsV̄s +
js

c̄s
− JwV̄w ≈ js

c̄s
(21)

In the case of the heterogeneous porous membrane, which is the subject of our
considerations here, the flow JD is identical with the flow JDb, which in turn is
related to the volume flow Jvb, which permeates across Part (b).

Consequently, the expression (21) is to be rewritten as

Jvb + JDb ≈ JwbV̄w + JsbV̄w +
jsb

c̄s
− JwbV̄w ≈ jsb

c̄s
=

js

c̄s
(22)
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Next, by putting into the formula (22) the expressions (14a) and (14b), we obtain:

js

c̄s
= Lpb∆P+ LDb∆Π = Lp

(
1− Lpa

Lp

)
∆P+ LDb∆Π = Lp(1− σ)∆P + LDb∆Π

(23)
So, the flow of the substance which permeates across the pores in the Part (b) of
the membrane (equal, in this case, to the total flow js across the membrane) is
given by the expression:

js = Lp(1− σ)c̄s∆P + c̄sLDb∆Π (24)

The above equation is identical with the mechanistic equation as derived by
Kargol and Kargol (2000, 2001, 2003a,b,c, 2004) and Kargol (2002), which becomes
obvious when the following notation is introduced:

LD = LDa + LDb = LDb (since LDa = 0) (25)

and
ωd = c̄sLD = c̄sLDb (26)

where (this is but a reminder) ωd is the coefficient of diffusive solute permeability.
Consequently, we obtain the following equation:

js = Lp(1− σ)c̄s∆P+ ωd∆Π (27)

which is an equation identical in form with Eq. (9).
Eqs. (18) and (27) have a form which is equivalent to Eqs. (4a) and (4b), if

the following conditions are satisfied:
1. The total filtration coefficient for the membrane is equal to the sum of

filtration coefficients for Part (a) and Part (b) of the membrane, namely Lp =
Lpa + Lpb.
The reflection coefficient for the membrane, in accordance with the adjusted Staver-

man’s definition (5) equal to σ =
LpD

Lp
(where LpD is the osmotic permeability

coefficient), is identical to the mechanistic coefficient σ =
Lpa

Lp
. It follows therefrom

that for heterogeneous membranes (in the sense of the Kargol’s definitions, see
Kargol and Kargol 2000, 2001, 2003a,b,c, 2004; Kargol 2002), the coefficient LpD

may be interpreted as the filtration coefficient of Part (a) of the membrane, that
is the semi-permeable part, for which σa = 1.

2. In the case at issue, the coefficient ωd ought to be treated as a coefficient
related to substance diffusion across the pores of Part (b) of the membrane, that
is the pores which are permeable to the solute s.

Even in the light of the above considerations, it may in general be stated that
the KK transport formalism is equivalent to the Kargol’s mechanistic formalism
for membrane transport.
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On the interpretation of permeability coefficient ω

The Kargol’s mechanistic equations (18) and (27), derived above (on the basis of
the adjusted KK phenomenological equations) are transparent in terms of interpre-
tation with regard to the membrane system shown in Fig. 2 (especially concerning
the diffusion coefficient ωd). Yet, as the subject of the present article is in fact a
survey of the analogies between mechanistic equations and the KK equations, we
shall try to formally transform the mechanistic equations into the conventional form
of the practical KK equations. Our objective here is to express the permeability
coefficient ω of the equation for the flow js, through mechanistic parameters.

With this in mind, let us transform Eq. (16) to obtain the following:

∆P =
1
Lp

Jv +
Lpa

Lp
∆Π

If the above expression is put into the formula (23), we obtain:

js

c̄s
= Lpb∆P+ LDb∆Π =

Lpb

Lp
Jv +

LpbLpa

Lp
∆Π+

LDb

Lp
Lp∆Π =

=
Lpb

Lp
Jv +

LpLD + LpaLpb

Lp
∆Π

Then, having applied the definition of the reflection coefficient as given in the
relation (17b), we can write the above formula in the following form:

js = (1− σ)c̄sJv +
LpLDb + LpbLpa

Lp
c̄s∆Π

or as
js = (1− σ)c̄sJv + ω∆Π (28)

where

ω =
LpLDb + LpaLpb

Lp
c̄s = c̄sLD +

LpaLpb

Lp
c̄s (29)

Eq. (28) has a form which is exactly equivalent to the practical KK equation, i.e.
Eq. (1b), which defines permeability coefficient ω (by means of the measurement
of the solute flow js, at Jv = 0).

From the above considerations, it follows that, with regard to the heteroge-
neous porous membranes, the coefficient ω is not a coefficient which formulates
the diffusive solute transport only. This conclusion follows from the analysis of the
expression (29). The term (1−σ)c̄sJv of this equation cannot be a convective term
only. In the light of the above considerations, it may be claimed that the applica-
bility of the conventional KK equation for the flow js with regard to heterogeneous
porous membranes may raise some doubt.
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Conclusions

It has been demonstrated that the Kargol’s mechanistic transport equations for the
flows Jv and js, may be derived from the adjusted phenomenological equations.
On the basis of the present article, it may generally be confirmed that the KK
thermodynamic formalism is equivalent to the mechanistic equations. These (KK
and mechanistic) equations yield the same research results pertaining to the flows
Jv and js. It is not difficult to note that their parameters Lp and σ are also identical.

In the present article, the mechanistic equation for the solute flow js in a form
analogous to the second practical KK equation has been derived. Simultaneously,
we have confirmed the doubts of the authors of the mechanistic model concerning
the issue of the physical interpretation of the coefficient ω (defined by Eq. (28)),
if it is applied to porous heterogeneous membranes. This KK equation appears
to be ambiguous in such a situation, which results from the fact that the term
ω∆Π of this equation does not formulate only the diffusive substance transport,
and the term (1 − σ)c̄sJv – convective transport only. In this context, we have
demonstrated that the coefficient ω, may be expressed through the phenomeno-
logical coefficient of diffusion LD and the filtration coefficients of both parts of
the porous membrane, i.e. its permeable and semi-permeable parts. So, with re-
gard to heterogeneous porous membranes, the equation for the flow js in the form
(27) or (8) (used by Kargol’s) is rather clear in terms of interpretation. The term
ωd∆Π of this equation formulates only the diffusive solute transport, and the term
(1− σ)Lpc̄s∆P – only the convective transport.

The present article comes closer to achieving a complete elucidation of the
interrelations between the KK equations and the mechanistic equations. The need
to elucidate these relations has been justified by the fact that, during the investi-
gations conducted on the basis of the KK equations, an enormous body of experi-
mental material has been collected, pertaining especially to biological membranes,
cell membranes included. Thanks to the consistency of mechanistic transport equa-
tions, and KK equations, these research results may be interpreted and considered
more thoroughly.
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