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Deformability of Multilamellar Vesicles*
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Abstract. Although a free unilamellar vesicle has zero or almost zero genuine
surface tension, the multilamellar vesicle (“onion”) exhibits a nonzero effective
surface tension σeff . The expression for σeff used in the literature is σeff ∼

√
κB/d0,

where B is the interaction modulus between the vesicle bilayers, d0 the repeating
distance between the bilayers in the droplet, and κ their bending rigidity. In this
paper we calculate the contributions to the effective surface tension of a lamellar
droplet in the case when the layers interact with one another and when they are
free. It is shown that the interaction contribution to the surface tension is small
and σeff is determined mainly by κ, the radius of the droplet R0, and the number
of the shape undulation modes lmax. A nonzero surface tension of the layers is
also included in the calculation which is necessary when the vesicle membrane is
stressed in the complex of other membranes.
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Introduction

It is now widely accepted in the literature that the density of the surface energy
of a lipid-bilayer membrane of vesicles or a surfactant monolayer of microemulsion
droplets can be expressed in the form (Canham 1970; Helfrich 1973)

ε = σ +
1
2
κ

(
1
R1
+
1
R2
−
2
Rs

)2
+

κ̄

R1R2
(1)

where σ is the microscopic surface tension, Ri are the local curvature radii, and
κ and κ̄ are the bending and Gaussian rigidity, respectively (Borkovec 1992). For
vesicles it is assumed (Seifert 1997) that the vesicle has no genuine surface tension,
i.e. σ = 0. However, the situation changes in the case of multilamellar droplets. It
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has been shown by van der Linden and Dröge (1993) that such a vesicle exhibits
an effective surface tension (σeff) which is nonzero even if the bilayers themselves
have zero surface tension. The vesicle was modeled by a system of large number of
concentric membranes of small thickness d. The membranes are separated by water
layers of thickness dw � d. Such layers in a solvent deform due to the fluctuations
in the shape. Another contribution to the deformations of the layers is connected
with the interaction between the layers. From the comparison of the deformation
energy with the energy of deformation as it would be for a layer changing its surface
area and exhibiting the surface tension σeff , the latter effective parameter has been
determined (van der Linden and Dröge 1993; van der Linden et al. 1996),

σeff =

[
l (l + 1)

(l − 1) (l+ 2)
κB

d0

]1/2
(2)

Here B is a constant of interaction between the layers, d0 = d+ dw, and the index
l = 2, 3, . . . numbers the deformation modes. For large l, Eq. (2) becomes identical
with the result for planar symmetry of the lamellar phase (de Gennes 1974). The
conclusion that the effective surface tension of the multilamellar vesicle is nonzero
even for zero surface tension of the bilayer is true. In the following we, however
show, that σeff considerably differs from Eq. (2). This is a consequence of the
bending energy contribution to the deformation energy (not considered by van der
Linden and Dröge 1993; van der Linden et al. 1996), as it follows from Eq. (1), and
a very large number of deformation modes, lmax, for large lamellar droplets. Since
the result of Eq. (2) is often used in the literature (for recent papers see: Courbin
et al. 2001; Leng et al. 2001; Soubiran et al. 2001; Versluis et al. 2001; Gradzielski
2003), e.g. in the calculations of the size of lamellar droplets (van der Linden et al.
1996) or modeling the forces exerted on a vesicle under stress (Berni et al. 2002), a
discussion on the appropriate expression for the σeff is of interest. In the next section
we present the calculation of the effective surface tension of a unilamellar vesicle
with zero microscopic surface tension. Then the case of multilamellar droplets is
considered. As distinct from the work by van der Linden and Dröge (1993), we do
not assume the zero surface tension of the layers. This assumption is valid for a
free vesicle but does not hold in the case when the membrane is a part of a more
complex structure, in particular, when it is stretched between bulky aggregates of
membranes (Lebedev and Muratov 1989).

Methods

Calculations of the effective surface tension

Let us first consider a unilamellar spherical vesicle of the equilibrium radius R0. Its
surface energy density is assumed to be given by Eq. (1) with σ = 0 and Rs =∞.
The deviation from the spherical equilibrium shape is described by the multipole
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expansion (Bohr and Mottelson 1975) in spherical harmonics,

R (ϑ, ϕ)−R0 =
∑
lm

ulmYlm (ϑ, ϕ) (3)

with 0 ≤ l ≤ lmax and m changing from −l to l. The number of the modes can
be estimated as lmax ∼ R0/a, where a is a typical molecular diameter (Sparling
and Sedlak 1989; Palmer and Morse 1996). The deformation energy (Es) expressed
through the fluctuation amplitudes (ulm) is (Sparling and Sedlak 1989)

∆ES =
1
2R20

∑
l�=0,m

κl (l + 1) (l− 1) (l + 2) |ulm|
2 (4)

This change of the vesicle free energy due to the deviation from the spherical shape
is connected to the change of the surface area (A) of the droplet (keeping the vesicle
volume constant),

∆A =
1
2

∑
l�=0,m

(l− 1) (l + 2) |ulm|
2 (5)

The effective surface tension is thus

σeff =
∆ES
∆A

=
1
R20

⎡
⎣ ∑
l�=0,m

κl (l + 1) (l − 1) (l + 2) |ulm|
2

⎤
⎦ ·

⎡
⎣ ∑
l�=0,m

(l − 1) (l+ 2) |ulm|
2

⎤
⎦
−1 (6)

Often only the most dominant ellipsoidal mode (giving the main contribution
to the thermodynamic quantities) is considered; then σeff ≈ 6κ/R20. However, it
is not correct to consider an arbitrary individual mode (l) to calculate from Eqs.
(4) and (5) the quantities ∆ES,l and ∆Al, and to combine σeff,l depending on
the mode number l as it was done by van der Linden et al. (1996). In general,
one must start with the whole sums determining the quantities ∆ES,l and ∆Al.
The question arises how to use the above expressions to estimate the effective
surface tension when all the modes contribute in Eqs. (4) and (5). We use here
the estimation that consists in replacing |ulm|2 by their averages over the thermal
fluctuations (Borkovec 1992):〈

|ulm|
2
〉
=

〈
u2l0

〉
≈

kBT

αl (l − 1) (l + 2)
αl ≡ σ +

2κ
R2s
−
4κ
RsR0

+
κl (l + 1)
R20

(7)

For true vesicles, the expression for αl simplifies since we have σ = 0 and
Rs = ∞. Substituting Eq. (7) into (4) and (5), one obtains the change in the free
energy of the droplet and the corresponding change of the droplet surface area.
This gives for the estimation of the effective surface tension

σeff ≈

[
kBT

2

lmax∑
l=2

(2l + 1)

][
kBTR

2
0

2κ

lmax∑
l=2

(
1
l
+
1
l+ 1

)]−1
≈
κ

2R20

l2max
ln lmax

(8)

assuming very large lmax that holds for vesicles having a typical radius of 104 Å.
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Results

Multilamellar vesicles (σ = 0)

The same method of calculation can be applied to the case of multilamellar vesicles
assuming zero surface tension of its layers (van der Linden and Dröge 1993). If there
is no interaction between the layers, the effective surface tension of the droplet is
that given in the preceding section since only the outer layer is observed. When
the layers interact, one proceeds similarly as van der Linden et al. (1996). The
deformation of the nth layer is

Rn (ϑ, ϕ) = rn

[
1 +

∑
lm

alm,nYlm (ϑ, ϕ)

]
(9)

The coefficients alm,n are dimensionless since ulm,n = rnalm,n depend on the radius

rn of the layer in equilibrium. We express alm,n through a
(0)
lm in the absence of

interaction, which are the same for all independent layers,

alm,n = R (rn) a
(0)
lm (10)

The unknown function R describes the spatial correlation between the layers
due to interaction. The deformation energy for the lth mode is then

∆ESI =
1
2
κl (l + 1) (l− 1) (l + 2)

∑
m

∣∣∣a(0)lm ∣∣∣2R2 (rn) =

=
κ

2d0
l (l + 1) (l − 1) (l + 2)

R0∫
0

drR2
(
r
∑
m

∣∣∣a(0)lm ∣∣∣2
) (11)

the second equation being written in the continuum limit (d0/R0 � 1). The inter-
action energy is (de Gennes 1974)

∆EI =
1
2
B

∫ [
∇rR (r) r

∑
m

a(0)m Ylm (ϑ, ϕ)

]2
r2drdΩ (12)

After the integration over the spatial angle Ω we have

∆EI =
1
2
B

∑
m

∣∣∣a(0)lm ∣∣∣2
R0∫
0

dr
{
R2r2 + 2RR′r3 +R′2r4

}
(13)

The function R is now found minimizing the total change of the energy ∆E =
∆ESI + ∆EI . This is done using the variational principle. The Euler–Lagrange
equation is

r4R′′ + 4r3R′ +
(
2r2 − λ2l

)
R = 0 λ2l ≡

κ

d0B
l (l + 1) (l − 1) (l + 2) (14)
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The solution of this equation, after the exclusion of the singularity at r = 0, is

R (r) =
R0

r
exp

(
−
λl

r
+
λl

R0

)
(15)

This solution describes how the deformation of the outer layer is transferred to
inner layers. The full energy for the lth mode is thus, using Eqs. (11) and (13),

∆E =
1
2
BλlR

2
0

∑
m

∣∣∣a(0)lm ∣∣∣2 (16)

If only the most dominant l = 2 mode is considered, we would have, using the
expression for the change of the surface area at deformation,

∆A =
R20
2
(l − 1) (l + 2)

∑
lm

∣∣∣a(0)lm ∣∣∣2 (17)

and the effective surface tension due to interaction is

σeff,int =

[
l (l + 1)

(l − 1) (l + 2)
κB

d0

]1/2
=

[
3
2
κB

d0

]1/2
(18)

The result is the same as that found by van der Linden and Dröge (1993), if the
incorrect factor 1/2 is dropped out. In a more correct approach the contributions
of all modes should be summed, which gives for the total energy change ∆E

∆E =
R20
2

∑
l�=0,m

λl|a
(0)
lm |
2 (19)

Here λl ∼ l2 for large l, while the corresponding term in the energy of the outer
layer that does not interact with other layers,

∆ES =
1
2

∑
l�=0,m

κl (l + 1) (l− 1) (l + 2) |a(0)lm |
2 (20)

behaves as ∼ l4. For large l (the case considered by van der Linden and Dröge
(1993)) the latter contribution becomes more important than the contribution (19)
given by the interaction. In fact, for a typical onion (see below after Eq. (22))
already for l = 14 one finds that ∆E ≈ ∆ES . To estimate the total sums we again
use the mean 〈∣∣∣a(0)lm ∣∣∣2〉 = kBT

κl (l + 1) (l − 1) (l + 2)
(21)

so that the effective surface tension due to interaction is

σeff,int ∼
∑
l

(2l+ 1)

√
B

d0κl (l + 1) (l − 1) (l + 2)

/∑
l

2l+ 1
κl (l + 1)

∼

√
Bκ

d0
(22)
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and it is independent of lmax, which is very large for multilamellar vesicles. Using
the parameters of a “typical onion” (van der Linden and Dröge 1993) (R0 ∼ 10−6

m, B ∼ 102 Jm−3, κ ∼ 50kBT , and d0 ∼ 12 nm), one estimates at room tem-
peratures σeff,int ∼ 5 · 10−5 Nm−1, and for σeff without interaction, Eq. (8),
σeff,0 ∼

(
l2max

/
ln lmax

)
· 10−7 Nm−1. A rough estimate of the maximum number

of modes can be done assuming that the total number of undulation modes within
2 ≤ l ≤ lmax, which is n − 4 = (lmax + 3)(lmax − 1) ≈ l2max, is determined by the
surface area A and the area a2 per independent degree of freedom as n = A/a2

(Palmer and Morse 1996). Taking a = 10 Å, one has lmax of order 103 so that σeff,0
is some three orders larger than σeff,int. The estimation shows that the effective sur-
face tension of multilamellar vesicles is given mainly by the bending energy of the
outer layer and not by the interaction energy between the layers, as it is believed
in the literature.

Multilamellar vesicles (σ 	= 0)

As mentioned in Introduction, vesicle membranes in a lamellar droplet can have
a nonzero surface tension σ. A generalization of the above results to this case is
straightforward. One has just to replace the deformation energy for the lth mode
due to the interaction, Eq. (11), by a more general expression

∆ESI =
1
2d0
(l− 1) (l + 2)

R0∫
0

dr
[
σr2 + κl (l + 1)

]
R2 (r)

∑
m

∣∣∣a(0)lm ∣∣∣2 (23)

and the deformation energy of the outer layer, in the absence of interaction, is

∆ES =
R20
2

[
σ +
κl (l + 1)
R20

]
(l− 1) (l + 2)

∑
m

∣∣∣a(0)lm ∣∣∣2 (24)

The interaction energy is the same as in Eq. (13). The function R(r) is found
minimizing the energy ∆ESI + ∆EI with respect to R, i.e. from the variation of
the functional

F (R,R′, r) =

R0∫
0

dr
{[
λ2l + (σl/R0)

2
r2

]
R2 (r) + r2 (R+ rR′)2

}

σ2l ≡
σR20
d0B

(l − 1) (l + 2)

(25)

The corresponding Euler–Lagrange equations are

r4R′′ + 4r3R′ +
[(
2− σ2l

/
R20

)
r2 − λ2l

]R
= 0 (26)

When σ = 0, we return to the case considered in the preceding section. For λl = 0,
the solution is

R (r) = rνl−3/2 νl ≡ (1/2)
√
1 + 4 (σl/R0)

2 (27)
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Figure 1. The function R(r) describing the spatial correlation between the layers of a
multilamellar vesicle due to the interaction, shown for the lowest deformation modes l = 2
(—), 3 (– – –), and 4 (· · ·). The upper three curves correspond to zero surface tension of
the layers (van der Linden and Dröge 1993), Eq. (15), the lower curves are calculated from
Eq. (28) for small σ (10−3 mN/m). The graph illustrates the difference between the two
approaches for the same vesicle parameters (R0 ∼ 10−6 m, B ∼ 102 Jm−3, κ ∼ 50kBT ,
and d0 ∼ 12 nm).

Here it is taken into account that R must be finite as r → 0, which requires also
the condition σl/R0 ≥

√
2. When both σ and λl are nonzero, the solution can be

expressed through the modified Bessel function Iµ, µ ≡ −νl,

R (r) =

(
R0

r

)3/2
Iµ

(
−λl
r

)
I−1µ

(
−λl
R0

)
(28)

Numerical representations of this solution are shown in Figure 1. A notable differ-
ence from Eq. (15) is seen even for a very small (on the level of detectability by
the current experimental techniques) surface tension σ.

Discussion

Amphiphilic molecules, because of their solubility properties, aggregate into molec-
ularly ordered structures which often take form of bilayers. The resulting aggregates
for curve bilayers are called vesicles, widely used as mimics of biological membranes.
The vesicle phase can consist of unilamellar or multi lamellar vesicles. When the
amphiphilic molecules are phopholipids, the vesicles are known as liposomes. Li-
posomes, due to their unique properties, such as encapsulation, permeability, and
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similarity to biological systems, have received considerable attention and are can-
didates for novel applications, e.g. in drug delivery, biochemical catalysis and cos-
metics (Lasic 1993). The vesicles are known to display complex physical behaviors,
some of which are only now beginning to understand (Pozo-Navas et al. 2003). A
number of questions is to be answered, in particular the mechanism for the shear-
induced change in conformation from sheet-like lamellae into the onion-like droplets
and the exact nature of these droplets (Berni et al. 2002). The physical proper-
ties of these systems are essentially determined by the properties of the droplet
membranes and, in the case of multilamellar vesicles, the interactions between the
bilayers together with the effects of the bilayer undulations have to be considered.
In the present paper simple but very successful phenomenological theory by Can-
ham (1970) and Helfrich (1973) has been applied to a particular problem of the
effective surface tension of multilamellar vesicles. The result that can be found in
the literature (van der Linden and Dröge 1993; van der Linden et al. 1996) is based
on the calculation of the deformation energy due to interaction between the layers.
Only one deformation mode l is considered and the surface tension of individual
membranes is assumed to be zero. The effective surface tension σeff is then obtained
from this deformation energy and the change of the surface, for very large l. We
have shown that this approach should be corrected in several points. First, for large
l, the contribution of the Helfrich bending energy of the membrane is important
and can be even dominant in σeff . Moreover, the membrane stressed in the complex
of other membranes should exhibit also a nonzero surface tension. This must be
taken into account in the consideration of the vesicle deformability. We have shown
that this influences the effective interaction between the membranes and the exact
formula for the transfer of the deformation between the layers has been obtained.
The found results can be applied e.g. in modeling the properties of “onions” and
interpretation of rheometry experiments (Bergenholtz and Wagner 1996), where
σeff is used to construct the balance between a viscous force exerted by the flow
field and an elastic force (determined by σeff) required to maintain a vesicle at a
given size.
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