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Abstract. Multidrug resistance (MDR) of neoplastic cells, i e resistance towards 
large groups of unrelated drugs, represents the phenomenon that dramatically de­
presses the effectiveness of cancer chemotherapy Membrane transport of ATPases 
from ABC superfamily plays an important role in MDR In the present paper we 
are aiming to compare two members of this family P-glycoprotem (PGP products 
of mdr genes) and multidrug resistance-associated protein (MRP, products of mrp 
genes) and their impact for MDR of neoplastic cells 
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Multidrug resistance of neoplastic cells 

Multidrug resistance (MDR) of neoplastic cells describes the phenomenon when 
cells become resistant to unrelated drugs with different chemical structures (En-
dicott and Ling 1989, Gottesman and Pastan 1993) Studies with cell lines and 
transplantable tumors have shown that MDR can develop rapidly and development 
of MDR represents a serious obstacle to successful treatment by cancer chemother­
apy (Simon and Schindler 1994, Ling 1997) Resistant cells were found to be cross-
resistant to a broad but well defined spectrum of structurally unrelated cytotoxic 
drugs like athracychnes (i e , doxorubicin - inhibitor of topoisomerase II, DNA 
intercalating substance), mitomycin C - DNA interacting substance, actinomycm 
D - antibiotics, Vmca alkaloids - inhibition of mitotic spindle formation (Biedler 
et al 1975, Bech-Hansen et al 1976) MDR can be intrinsic or acquired, depending 
on the time of its occurrence, either at diagnosis or during the chemotherapy In­
vestigations of molecular mechanisms involved in MDR of neoplastic tissue during 
the last two decades resulted in identification of the following mechanisms 
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- Reduced level of drug accumulation mediated by drug-efflux activity of P-
glycoprotein (PGP; 170 kDa product of mdrl, 2 or 3 genes; Childs and Ling 
1994) or MDR-associated protein (MRP; 190 kDa product of mrp gene; Cole 
et al. 1992). Both peptides are the members of ABC (ATP-binding cassette) 
transporters superfamily and are widely distributed in all kingdoms of life. 

- Enhanced level of drug detoxification induced by increases in activities of en­
zymes of cell detoxification pathways like glutathione-S-transferase, glutathion 
reductase, glutathion peroxidase, cytochrome P450 etc. (Morrow and Cowan 
1990). 

- Reduced content of drug target proteins such as topoisomerase II isoenzymes 
(Beck et al. 1993). 

- Alterations in drug-induced apoptosis that involve genes in the Bcl-2 pathway 
(Reed 1995). 
The present review paper is focused on MDR associated predominantly with 

PGP or MRP overexpression. 

A B C transporters 

Distribution and Transport Functions 

The ABC transporter superfamily includes proteins, which are capable of a mul­
titude of active membrane transport functions (Henikoff et al. 1997). More than 
130 representatives have been identified in species ranging from archaebacteria to 
humans (Higgins 1992; Volkl et al. 1996). ABC transporters in prokaryotes and 
eukaryotes participate in the transport of a wide range of distinct substrates: alka­
loids, lipids, peptides, steroids, sugars, inorganic anions and heavy metal chelates. 
With the exception of inorganic anions, the transport of all these substrates is 
directly energized by MgATP consumption. 

Structure 

All ABC transporters are constituted of one or two copies containing two basic hy­
drophobic and hydrophilic structural elements. Hydrophobic, membrane spanning 
domain (MSD) contains multiple (usually four or six) transmembrane helices (TM). 
Hydrophilic, cytoplasmically oriented nucleotide-binding domain (NBD) binds and 
hydrolyzes ATP (Hyde et al. 1990; Higgins 1992). 

The MSD spans the membrane to form the pathway for movement of substrates 
across the lipidic bilayer (or between bilayer leaflets) and also determines the speci­
ficity (selectivity) of the transporter. The NBDs and MSDs can be expressed from 
one to four genes as separate polypeptides, or they may be fused together in one 
of several alternative arrangements. In E. coli, the histidine permease is encoded 
by four separated genes, one for each membrane-bound domain and NBD, whereas 
the eukaryotic TAP 1/2 peptide transporter is encoded by two genes (Kelly et al. 
1992). 

The NBDs, highly conserved units, are 30-40% identical over a span of about 
200 amino acid residues between family members, and each NBD encompasses 
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one copy of each of three idiotypic sequence motifs These motifs are a Walker A 
box and a Walker B box (Walker et al 1982) and a C motif (or an ABC signa­
ture), situated between the two Walker boxes Walker motifs were found in several 
nucleotide-bmding proteins, for example cation ATPases, myosin, adenylate kinase, 
phosphofructokinase Contrary to Walker boxes, the C motif is unique to the NBDs 
of ABC transporters (Cole and Deeley 1998) 

Multidrug resistance-associated proteins (MRP) 

Mammalian MRP proteins are members of phylogenetically discrete subgroup of 
ABC transporters which includes human proteins MRP1, MRP2 (multispecific 
organic anion transporter - cMOAT, Paulusma et al 1996) and the more recently 
identified members MRP3, MRP4, MRP5, and MRP6 (Alhkmets et al 1996, Kool 
et al 1997), the yeast cadmium resistance factor 1 (YCF1, Szczypkaet al 1994), the 
yeast oligomycm resistance I protein (YORI, Katzmann et al 1995), the Leishmama 
tarentolae P glycoprotein A (associated with resistance to arsemcals and antimony, 
Callahan et al 1991), and the mammalian sulfonylurea receptors (SUR1 and SUR2, 
Inagaki et al 1996) 

Multidrug resistance protein 2 (cMOAT) is expressed predominantly on the 
canalicular membrane of hepatocytes and released into the bile (Paulusma et al 
1997) A mutation in human MRP2 has been detected in Dubm Johnson syndrome, 
a pathology characterized by a defect in hepatic multispecific organic anion trans­
port (Buchler et al 1996) 

Multidrug resistance proteinl (MRP1) 

The human multidrug resistance protein MRP1 is a 190 kDa membrane glycopro­
tein that causes resistance of human tumor cells to various anticancer drugs (Cole 
et al 1992, Cole and Deeley 1993, Grant et al 1994, Zaman et al 1994) This type 
of resistance involves the extrusion of these drugs out of the cell Using monoclonal 
antibodies specific against different domains of MRP the localization of MRP in a 
panel of normal human tissues and malignant tumors was determined (reviewed in 
Flens et al 1997) Whereas in malignant tumors strong plasma membrane MRP 
staining was frequently observed, m normal human tissues MRP staining was pre­
dominantly cytoplasmic MRP was detected in several types of epithelia, muscle 
cells, and macrophages The presence of MRP in epithelia may have a connection 
with an excretory function and MRP can play role in protecting the organism 
against xenobiotics 

The multidrug resistance-associated protein 1 gene was first isolated after 
molecular cloning from H69AR human small cell lung cancer cell line (Cole et 
al 1992, reviewed in Deeley and Cole 1997) Mrpl gene encodes the previously 
described GS-X (ATP-dependent glutathione S-conjugate export pump) Stud­
ies using plasma membrane vesicles prepared from MRPl-overproducing cell lines 
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demonstrated increased ATP-dependent, high-affinity transport activities for cys-
teinyl leukotrienes (LTC4, Jedlitschky et al. 1994; Leier et al. 1994; Miiller et al. 
1994). MRPl also confers resistance to a spectrum of natural product chemother-
apeutic agents, which include the Vinca alkaloids, the anthracyclines, and the 
epipodophyllotoxins. However, it has not been possible to demonstrate direct MRP-
mediated, ATP-dependent transport of vincristine and anatoxin Bi. This was found 
only in the presence of physiological concentrations of GSH (Keppler et al. 1996; 
Barnouin et al. 1998; Loe et al. 1998; Renes et al. 1999). MRPl can act as a pri­
mary active transporter of a wide range of organic, anionic conjugates, some of 
which are physiological substrates (Ishikawa et al. 1996; Loe et al. 1997). These in­
clude a structurally diverse array of glutathione, glucuronide, and sulfate conjugates 
with LTC4, and also anionic conjugates of bile and steroid hormones (Loe et al. 
1996). In addition, the MRPl is responsible for the release of oxidized glutathione 
(GSSG) from cells. This active efflux of GSSG is considered to be an important 
mechanism that maintains the reduced status of intracellular thiols under oxida­
tive stress (Leier et al. 1996). All these facts indicate, that MRPl besides other, 
should cooperate with glutathion S-transferases and other enzymes of glutathion 
detoxification systems as exporter of cysteinyl drug conjugates (i.e., final product 
of glutathion detoxification system). This assumption is fully consistent with the 
finding of Morrow et al. (1998) that GST (isoenzyme Al-1) is acting synergically 
with MRPl in protection of MCF7 (breast carcinoma cells) against antineoplastic 
drug. 

Structure of MRPl 

Cole et al. (1992), Cole and Deeley (1993) and Stride et al. (1997) assumed from 
primary structure and hydropathy analyses of MRPl that this protein contains 
two MSDs (MSD1, MSD2), those linked with intracellular parts associated with 
NBD1 oriented to C termini (Figure 1A). Hipfner et al. (1997) corrected the above 
structure with modification that this contains two NH2-proximal MSDs (MSD1 
and MSD2) and one COOH-proximal MSD (MSD3). MSD2 and MSD3 represent 
the structures corresponding to MSD1 and MSD2 in the previous model. Like other 
members of the ABC-superfamily, the nucleotid binding domains (NBDs) of MRP 
are preceded by a polytopic membrane spanning domain (MSD) that may contain 
as many as six transmembrane (TM) helices. However, MRP also contains a third, 
NH2-proximal MSD1. Topology predictions derived from various protein structure 
algorithms indicate that this region, MSD1, could span the membrane four to six 
times. NH2 terminus of MRP is extracellular, thus it appears most likely that MSD1 
spans the membrane five times (Figure IB). 

Substrate specificity of MRPl 

Although MRPl is able to confer resistance to drugs which are P-glycoprotein 
(PGP) (MDR1) substrates, the substrate specificity of MRPl (Table 1) seems to 
be different from that of PGP (MDR1). Transport studies with membrane vesicles 
isolated from MRPl overexpressing cells, either in vitro selected or transfected, 
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Figure 1. Models of multidrug resistance protein (MRP) membrane topology. A. first 
model of MRP contained two hydrophobic membrane spanning domains (MSDl and 
MSD2) with 8 and 4 transmembrane helices (TM) and hydrophobic nucleotide-binding 
domains (NBDs), B. corrected model of MRP; this model contains three MSDs (MSDl, 
MSD2, MSD3) with 5, 6, and 6 TMs. 

revealed that MRPl is a transporter of multivalent organic anions, preferentially 
glutathione S-conjugates (GS-conjugates, Miiller et al. 1994; Jedlitschky et al. 1996; 
Loe et al. 1996, 1997; Barnouin et al. 1998) but also of sulphate conjugates (Jedl­
itschky et al. 1996) and glucuronides (Jedlitschky et al. 1996; Loe et al. 1996). Also 
oxidized glutathione (GSSG), complexes of reduced glutathione (GSH) with arsen-
ite (Zaman and Pardini 1995) and unmodified compounds in the presence of GSH 
(Loe et al. 1996, 1997) are MRPl substrates. In view of its substrate specificity 
and the ubiquitous expression of MRPl in human tissues (Zaman et al. 1993) and 
blood cells (Burger et al. 1994), the putative physiological role of MRPl seems 
to be cellular extrusion of metabolites of GSH-dependent detoxification reactions 
(Miiller et al. 1996). 
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Table 1. Substrates of MRPl 

SUBSTRATES 

leukotnene C4 

leukotriene D4, E4 

N-acetyl-leukotnene E4, 
S-Glutathionyl 2,4-dinitrobenzene, 
6a-Glucuronosyl hyodeoxycholate, 
Glucuronosyl etoposide, 
3a-Sulfatolithocholyltaunne 

S-Glutathionyl Aflatoxín BI, 
Aflatoxín Bi + reduced glutathione 

S-Glutathionyl Prostaglandin A2 

S-Glutathionyl ethacrynic acid 

S-Glutathionyl N-ethylmaleimide 

Chlorambucil 

Bilirubin 

Melphalan 

Glutathione disulfide 

17/?-Glucuronosyl estradiol 

Folate, Fluo-3 

Methotrexate 

p-Ammohippurate 

Vincristine + reduced glutathione 

Daunorubicin + reduced glutathione 
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Leier et al 1994, Loe et al 1996, Stride et 
al 1997 

Leier et al 1994, Jedlitschky et al 1996 

Jedlitschky et al 1996 

Loe et al 1997 
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Zaman et al 1996 

Bakos et al 1998 
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Jedlitschky et al 1997 

Jedlitschky et al 1996, Barnouin et al 1998 

Leier et al 1996 

Jedlitschky et al 1996, Loe et al 1996, 
Stride et al 1997 

Keppler et al 1998, 1999 

Hooyberg et al 1999 

Leier et al 1999 

Loe et al 1996, 1998, Stride et al 1997, 
Renes et al 1999 

Renes et al 1999 

There is no direct evidence for conjugation of GSH to drugs to which MRPl 
confers resistance (Zaman and Pardini 1995; O'Brien and Tew 1996). There are 
indications that MRPl mediates GSH-transport (Zaman and Pardini 1995; Rappa 
et al 1997), and may act as a co-transporter for GSH and the drugs. Thus, GSH 
may be a low affinity substrate for MRPl. Fiom experiments using the vanadate-
trapping technique it has been suggested that GSH as well as anticancer drugs 
directly interacts with MRPl (Taguchi et al 1997). Transport of anionic MRP1-
substrates such as GSH- and glucuronide-conjugates are inhibited by hydrophobic 
(cationic) vmca alkaloids (Miiller et al. 1994; Loe et al 1996) and anthracyclines 
(Loe et al 1996). One hypothesis explaining these results is that MRPl may con­
tain two binding sites: one for hydrophobic compounds and one for hydrophilic 
compounds. This would allow a similar binding of GSH and the hydrophobic drug 
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as well as binding of hydrophobic compounds conjugated to GSH, glucuronate or 
sulphate 

Renes et al (1999) found that MRPl transports vmciistine and daunorubicm 
in an ATP- and GSH-dependent manner in comparison with PGP They also found 
that N-(4',4'-azo-n-pentyl)-21-deoxy-ajmahmum (APDA), substance that is a sub­
strate for PGP, is not a substrate for MRPl A possible explanation for the inability 
of MRP to bind and transport these chemotherapeutic agents, and a clue to one of 
the proteins potential physiological role, was provided by the demonstration that 
MRP in mside-out membrane vesicles can act as a high-affinity, primary active 
transporter of the cystemyl leukotnene, LTC4 (Jedlitschky et al 1994, Loe et al 
1996) MRP can also actively transport a variety of other GSH-conjugated xenobi-
otic s, including the GSH conjugates of the activated forms of the potent carcinogen 
aflatoxín Bl (Loe et al 1997) These latter findings suggest that MRP may have a 
protective role m chemical carcinogenesis Consideration of the molecular structure 
of LTC4 prompted the suggestion that MRP transports anionic conjugates of the 
drugs rathei than the unmodified drugs themselves It was also demonstrated that 
MRP could transport unmodified vincristine and anatoxin Bl into membiane vesi­
cles m an ATP-dependent manner but only m the presence of GSH (Loe et al 1996, 
1997) In addition to LTC4, it has been shown that other endogenously formed or­
ganic anion conjugates previously proposed as putative physiological substrates of 
P-glycoprotem, such as 17b-estradiol, (17-b-D-glucuromde), bilirubin glucuromdes, 
and some sulfated bile salts, are actively tiansported by MRP in vitro (Loe et al 
1996, Jedlitschky et al 1996, 1997) However, although MRP may be an efficient 
transporter of certain glucuromdes, glucuronate itself, unlike GSH, does not stim­
ulate the active transport of unmodified xeno- or endobiotics Another endobiotic 
shown to be actively transported by MRP in vitro is oxidized GSH or GSSG (Leier 
et al 1996) The identification of this compound as a physiological substrate raises 
the possible role of MRP in cellular defenses against oxidative stress and perhaps 
also m the maintenance of intracellular redox potential 

Several studies have demonstrated that human immunodeficiency virus (HIV) 
proteinase inhibitors (Pis) are substrates of the multidrug transporter P-glycopro­
tem (PGP) (Kim et al 1998, Lee et al 1998, Washington et al 1998) In addition 
to previous observations, Snmvas et al (1998) demonstrated for the first time that 
HIV Pis interact also with MRPl, another multidrug transporter protein 

P-glycoprotein (PGP) 

P-glycoprotem (PGP) is a 170-kDa plasma membrane protein that is most often 
involved 111 the multidrug resistance phenomenon (responsible for failure of many 
human cancer chemotherapies) PGP was first detected as a surface phosphoglyco 
protein overexpressed in cultured cells with developed multidrug resistance (Juliano 
and Lmg 1976) and was subsequently cloned from mouse, and human cells (Chen et 
al 1986, Gros et al 1986) PGP is expected to work as an ATP-dnven efflux pump, 
transporting through the plasma membrane an unusually broad but well defined 
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spectrum of structurally unrelated cytotoxic drugs, including the Vmca alkaloids, 
anthracyclmes, epipodophyllotoxms, and taxanes (Biedler and Riehm 1970, Endi-
cott and Ling 1989, Ford 1995, reviewed in Gottesman et al 1995) The clinical 
relevance of the transport by P-glycoprotein has been suggested by several stud­
ies Strong PGP expression has been discussed as a negative prognostic marker for 
chemotherapy as shown in studies of breast and ovarian carcinomas (Venerom et al 
1994), osteosarcoma (Baldini et al 1995), Ewing's sarcoma (Roessner et al 1993), 
neuroblastoma (Chan et al 1996), and some hematological malignancies such as 
acute myeloid leukemia (Samdam et al 1996) 

PGP overexpression may be involved also in etiology of HIV-1 infection, be­
cause inhibition of virus production by MDR1 transporter was recently observed 
(Lee et al 2000) On the other hand, inhibitors of HIV-1 proteases (like riton­
avir, saquinavir and indinavir) represent substrates for PGP encoding by mdrl 
gene (see below) Expression of mdrl in CD4+ T-lymphocytes, the major target 
for HIV-1 infection, has also been reported (Bommhardt et al 1994, Lucia et al 
1995, Bming and Miller 1997) HIV-1 protease inhibitors ritonavir, saquinavir, and 
indinavir (effective in inhibiting HIV-1 replication) were found to be recognized 
by PGP, and their effectiveness in inhibiting HIV-1 is reduced in mdrí-expressmg 
cells (Lee et al 1998) Recently Lee et al (2000) found that the overexpression of 
PGP m cells reduces the susceptibility of CD4+ human cells to HIV-1, probably 
by affecting viral fusion as well as downstream events This represents the first ob­
servation that the expression of a multimembrane-spanmng protein inhibits HIV-1 
infection High PGP expression reduces uptake of HIV-1 protease inhibitors, so 
although PGP-expressing cells may be relatively resistant to HIV-1 infection, once 
these cells are infected it may be more difficult to eradicate the virus 

Localization of PGP in normal tissue and possible physiological functions for PGP 

Although PGP is expressed normally in many different tissues, the physiological 
functions and molecular mechanisms of the protein actions remain under active 
investigation Based on expression in epithelia of the intestine, kidney, liver, and 
endothelial cells of the blood-brain barrier, a role for PGP m membrane transport 
that may secure several physiological processes is suggested These processes can 
involve distribution of substrates, effectors and hormones or prevention against 
toxins and xenobiotics Due to wide tissue distribution of PGP it seems that this 
protein is a part of transport systems in cells and plays an important role in normal 
and pathological physiology of cells In epithelial cells of the lower gastrointestinal 
tract (jejunum, ileum, and colon), high levels of PGP are located only on the 
mucosal surface of these tissues This suggests a function of PGP in prevention of 
substrates uptake and perhaps in facilitation of excretion across the mucosa of the 
gastrointestinal tract (Thiebaut et al 1987) In kidney and liver, PGP is present 
on the brush border and biliary face, respectively, of proximal tubule cells and 
hepatocytes (Cordon-Cardo et al 1990) This distribution is consistent with a role 
of PGP in excretion of xenobiotics and endogenous toxins into the urine and bile 
Interestingly, the localization of PGP on the luminal surface of capillary endothelial 
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cells in the brain is consistent with a role of PGP in forming of the blood-brain 
barrier (Thiebaut et al. 1989; Tsuji et al. 1993). PGP is expressed also in placenta 
(MacFarland et al. 1994), which suggests its role in protection of fetus from toxic 
xenobiotics in the initial part of pregnancy (van Kalken et al. 1992). 

PGP is also expressed in hematopoetic stem cells, natural killer cells, antigen-
presenting dendritic cells, and T and B lymphocytes (Klimecki et al. 1994; Ran­
dolph et al. 1998). Recent work by Johnstone et al. (1999) and others have demon­
strated that functional PGP might play a role in regulating programmed cell death 
and differentiation (Los et al. 1997; Robinson et al. 1997; Smyth et al. 1998). There 
are two hypotheses to define the method of apoptosis inhibition by PGP, but this 
is still a theoretical model (reviewed in Johnstone et al. 2000). 

Localization of PGP in steroid-secreting glands suggests that PGP might be 
involved in secretion of steroids, or in protection of steroid-secreting cell plasma 
membranes from the toxic effects of high steroid concentrations. Consistent with 
this assumption are findings that progesterone is a PGP inhibitor (Yang et al. 
1989) and other steroids, especially corticosterone, are transported by epithelial 
monolayers expressing PGP (Ueda et al. 1992). 

Some studies suggest that PGP may act as a flippase for phospholipids and this 
flippase activity is ATP-dependent (van Helvoort et al. 1996). Recently, PGP has 
been shown to regulate the translocation of a wide variety of short chain analogs 
of phospholipids from the inner to outer leaflet of the plasma membrane. More­
over, the function of human mdr3 as a flippase for native phosphatidylcholine and 
sphingomyelin was also suggested (Bosch et al. 1997; Bezombes et al. 1998). 

Lange and Steck (1994) have shown that esterification of plasma membrane 
cholesterol in rat hepatoma cells is inhibited rapidly by treatment with a wide 
variety of amphiphilic compounds and most of these compounds were nonspecific 
inhibitors of PGP. Recent studies with cells derived from tissues that normally 
express PGP suggest a possible indirect role of PGP in facilitating cholesterol 
trafficking, associated with enhanced esterification of plasma membrane cholesterol 
(Debry et al. 1997; Luker et al. 1999; reviewed in Johnstone et al. 2000). The 
cholesterol substrate for esterification originates in the plasma membrane and must 
be transported to the endoplasmic reticulum for esterification. Debry et al. (1997) 
have assumed that this transport may be secured by MDR1 PGP. 

PGP might also act as an ion channel. It now appears that mdrl in humans 
(Bond et al. 1998; Vanoye et al. 1999) and mdrl a in mice can regulate the activity 
of volume-activated chloride channels, but not mdrlb (Valverde et al. 1996; Bond 
et al. 1998). Chloride channel regulation is inhibited by phosphorylation of PGP 
by protein kinase C (PKC) (reviewed in Johnstone et al. 2000). 

Genes encoding PGP 

PGP genes from hamster, mouse and human have been cloned and sequenced, but 
PGP homologues have been identified also in several other animal species. PGP is 
encoded by a small multigene family (mdr class 1, 2 and 3). All three isoforms are 
present in rodents, while in humans only two isoforms 1 and 3 are expressed (Childs 
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and Lmg 1994) There are also differencies in the localization of PGP genes Human 
genes are closely linked on chromosome 7, mice genes are smaller and are located 
on the fifth chromosome, and hamster genes are on the twentieth chromosome 
Products of these genes have the largest homology for ATP-bindmg sites and for 
the first and the second intracytoplasmic loop in both halves of the molecule 

Transfection studies have demonstrated that the mdrl and mdr2 isoforms de 
crease intracellular concentrations of a wide variety of structurally diverse chemo­
therapeutic agents, resulting in MDR On the other hand, the closely related mdr3 
is not associated with resistance to drugs (Ruetz and Gros 1994) Mdr3 isoform 
can behave as phosphatidylcholine (PC) translocase, or flippase, responsible for 
efflux of this phospholipid into the bile Mdrl has been also reported to íegulate 
the translocation of a range of short-cham phospholipid analogs (Bosch et al 1997) 
and endogenous phospholipids such as sphingomyelin (Bezombes et al 1998) 

The genes encoding MRP and PGP are evolutionary very distant The mrp 
gene is more closely related to the cystic fibrosis gene, CFTR, whereas the mdrl 
gene is evolutionary more related to the bacterial hemolysin B gene than to the 
mammalian mrp gene (Ling 1997) It is also not clear whether MRP can recog­
nize drugs directly (similar to PGP), or whether additional modification, such as 
conjugation of the drug, is required 

Structure of PGP 

PGP encoded by the mdrl gene has 1 280 ammo acids organized in two tandem 
repeats of 610 amino acids, joined by a linker region of 60 ammo acids (Chen 
et al 1986) Each repeat has an N-terminal hydrophobic domain containing six 
putative membrane-spanning a helices followed by a hydrophilic domain containing 
a cytoplasmic nucleotide-bmding domain (Fig 2) with characteristic Walker motifs 
A and B (Kast et al 1996) Each nucleotide-bmdmg domain has been shown to 
efficiently bind ATP (and its analogs) and hydrolyze ATP (Baubichon-Cortay et 

M S D 1 MSD 2 

COOH 

NBD1 linker region NBD 2 

Figure 2. Topological model of P-glycoprotein This model contains two membrane span 
nmg domains (MSDs) with six and six transmembrane helices (TMs) and two nucleotide-
bmdmg domains (NBDs) with ATP-binding sites and Walker A and B motifs (not shown) 



Drug Transporters 225 

al 1994, Sharma and Rose 1995, Dayan et al 1996) There has been considerable 
effort to understand the role of various domains in the mechanism of transport by 
PGP Both halves of PGP can be expressed as separate polypeptides, or they may 
be fused together in one of several arrangements, but substrate-stimulated ATPase 
activity was detected only when the two halves were expressed simultaneously 
(Loo and Clarke 1994a) It is also clear that interaction between the ATP-bmdmg 
sites and the drug binding domains is essential for drug transport ATP-bmdmg 
sites are essential because mactivation of either site by mutagenesis or chemical 
modification inhibits substrate stimulated ATPase activity (Azzaria et al 1989, 
Urbatsch et al 1995, Loo and Clarke 1995) However, it is clear, that the next 
major breakthrough in understanding the mechanism of action of human PGP will 
occur with the generation of high-resolution two-dimensional and three-dimensional 
structures 

Substrates and modulators of PGP 

Resistant tumors are found to be cross-resistant to a broad but well-defined spec 
trum of structurally unrelated cytotoxic drugs, including the Vmca alkaloids, an 
thracyclmes, epipodophyllotoxms, and taxanes These compounds are chemically 
diverse and include not only anticancer drugs, but also therapeutic agents such as 
HIV-protease inhibitors (Table 2) 

The ability of PGP to catch and transport the substances with this diversity 
of physico-chemical structures may be fulfilled only at existence of effective binding 
sites but with broad substrate specificity (Chen and Simon 2000) Recently we have 
described that the flexibility of drug molecule (i e possibility of substance to exist 
m various structural isoforms), hydrophobicity, molecular weight less than 1300 
g/mol and acidobasic properties that enable the substance to exist at physiological 
pH in non-protomsed form represent important features that predetermine the 
substance to be a substrate for PGP (Breier et al 2000) 

Many pharmacological agents from diverse structural classes have been iden­
tified as PGP inhibitors (chemosensitizers) or MDR modulators (Table 3) The 
mechanism by which modulators inhibit PGP function is specific for single chemo-
sensitizer Inhibition of drug transport could potentially result from the blockage 
of specific recognition of the substrate, binding of ATP, ATP hydrolysis, or cou­
pling of ATP hydrolysis to translocation of the substrate Most reversing agents 
block drug transport by acting as competitive or noncompetitive inhibitors and by 
binding either to drug interaction sites or to other modulator binding sites, leading 
to allosteric changes 

Several chemosensitizers were predicted to interact with the same structure of 
PGP molecule as a substrate and compete between each other (for calcium entry 
blockers see Kessels and Wilberdmg 1984) On the other hand, Pascaud et al (1998) 
described that PGP has distinct but interacting binding sites for cytotoxic drugs 
(vinblastine) and reversing agents (verapamil and several dihydropyndmes) How­
ever, in this time it is not clear whether PGP really contains distinct binding sites 
for substrates and inhibitors, or common binding sites for both with complicated 
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Table 2. Substrates of PGP 

SUBSTRATES 

Anticancer drugs 
Vmca alkaloids - vincristine, vinblastine 
Anthracychnes - doxorubicin, daunorubi-
cm, epirubicin 
Epipodophyllotoxins - Etoposide, Tenopo-
side, Verapamil, nifedipine, bepndil, nicar­
dipine, mguldipme, nitrendipine, trifluope­
razine, 
Actmomycm D, Mitomycin C 
Pachtaxel - taxol 

Cyclic and linear peptides 
Gramicidin D, Valmomycm and others* 

Other cytotoxic agents 
Colchicine, Emetine, Ethidium bromide 

HIV-protease inhibitors 
Ritonavir > Saquinavir > Nelfinavir S> 
Indinavir 

Other compounds 
Hoechst 33342, Rhodamine 123, Calcein-
AM, Cortisol, aldosterone, dexamethasone, 
tetraphenylphosphonmm (TPA+), 
triphenylmethylphosphonium (TPMP+), 
diphenyldimethylphosphonmm (DDP+) 

REFERENCES 

Gottesman and Pastan 1988, Endicott and 
Ling 1989, Beck and Qian 1992, Gottes­
man and Pastan 1993, Simon and Schmdler 
1994 

Zhan et al 1997, Sharom et al 1998 

Lee et al 1998, Polh et al 1999, Rao et al 
1999, Hochman et al 2000 
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*Sharom et al 1998 described a diverse group of linear or cyclic peptides (proteases 
inhibitors, membrane active toxms, membrane active antibiotics, immunosuppressant, ion 
selective íonophors, etc ) as substrates of PGP 

structure in which distinct parts responsible for binding different substances may 
exist The latter possibility may be deduced from paper of Loo and Clarke (1994b), 
where it has been shown that different ammoacids of T M 6 segment (residues 330-
351) of human P-glycoprotein play a role m resistance against different agents For 
example- replacement of Val338 by Ala resulted in enhanced resistance to colchicine 
and reduced relative resistance to vinblastine; replacement of Gly341 by Val con­
ferred little resistance to colchicine or doxorubicin but resistance to vinblastine or 
actinomycm D was retained, replacement of Ala342 by Leu conferred resistance to 
all four drugs; replacement of Ser344 by Ala, Thr, Cys, or Tyr was unable to confer 
drug resistance; changes to Phe335 affected dissociation of vinblastine. 

On the other hand, it has been found that several substances like ATP ana­
logues, N-ethylmaleimide or vanadate affect P G P transport activity due to blocking 
of its ATP binding sites (al-Shawi et al. 1994; Urbatsch et al. 1994). Similarly to 
these substances, pentoxifylline and its derivatives depress the P G P mediated MDR 
probably m this way (Breier et al. 1994; Štefanková et al. 1996; Drobná et al. 2000) 
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Table 3. Chemosensitizmg compounds which reverse multidrug resistance 

REVERSING COMPOUNDS 

calcium channel blockers 
verapamil, galopamil, flunanzine, diltiazem, 
mmodipme, nifedipine, azidopine 

calmodulin antagonists 
trifluoperazine, chlorpromazme, thioridaz­
ine, perphenazine 

steroids 
progesterone, tamoxifen, Cortisol 

cyclic peptides 
cyclosporin A, valmomycin 

local anesthetics 
cmchocame, articame, hdocame 

xantmes 
pentoxiphylline 

drug analogs 
qumidine, chloroqume, hydrophobic cepha­
losporins 

REFERENCES 

Tsuro 1981, Cano-Gauci andRiordan 1987, 
Tytgat et al 1988, Barančík et al 1994, 
Boháčova et al 2000 

Kessels and Wilberding 1984, Vendnk et 
al 1992, Barančík et al 1994, Boháčova et 
al 2000 

Ramu et al 1984, Barančík et al 1994 

Twentyman 1988, Barančík et al 1994 

Barančík et al 1994, Boháčova et al 2000 

Breier et al 1994, Stefanková et al 1996, 
Boháčova et al 2000 

Wmgler 1996, Bray and Ward 1998, Berger 
et al 1999, Vezmar and Georges 2000 

PGP mediated MDR may be also affected by modulation of regulatory pro­
cesses. For example phorbol myristate acetate (direct activator of PKC) was found 
to elevate (Barančík et al. 1995) and bisindolylmaleimid (inhibitor of PKC) was 
found to depress (Boháčova et al. 1999) the PGP mediated MDR Recently we 
observed differences in expression and activity of some mitogen-activated protein 
kinases (Barančík et al 1999) Moreover, we have found that inhibition of mitogen 
activated protein kinase p38-MAPK regulates the PGP mediated MDR (Barančík 
et al. 1999, 2001). 

Conclusion 

Although a wealth of information on ABC transporters has been generated in recent 
years, some important questions remain open 

We still do not know: 
- how can PGP and MRP operate as a drug efflux pump for such variable 

substances; 
- how is their activity regulated and what are the ways to suppress the activity 

effectively; 
- what is the exact role of PGP and MRP in normal physiology; 
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- how is P G P and M R P overexpression regulated m neoplastic cells undei chemo-
theiapeutic t reatment, 

- which ways can be used to stop the P G P and M R P overexpression 
It is clear that the members of the superfamily of ABC transporters in prokary 

otes and eukaryotes ai e involved in the transport of a wide range of substrates Some 
ABC t ianspoiters can transport veiy large substrates, whereas other piefei lathei 
small substiates Our lesults (Bieier et al 2000) suggest that to be transportable 
by P G P the substrates should fulfil some criteria (hydrophobicity, structural flexi 
bihty, molecular weight not exceeding 1000 g/mol, uncharged at physiological pH) 
However, these results should be fuither venfied more precisely 

ATP binding and hydiolysis appeal to be essential foi the proper functioning 
of P G P including drug transport Inhibition of diug t ranspoit could be induced 
by the blockage of specific sites responsible foi recognition of the drugs, binding of 
ATP, ATP hydrolysis, oi coupling of ATP hjdiolysis to translocation of the drug 

It is evident t h a t substances effectively inhibiting t iansport activities of P G P 
and M R P would open a way to fundamental impiovements in chemotherapy of 
resistant tumors In the future better knowledge about s t iuctuia l features of this 
inhibition is needed for undeis tandmg the moleculai mechanisms of depression of 
P G P and other ABC transpoiters activity 
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