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Cluster Buckling as a Result of Compression-bending
Balance in Lipid Bilayer

J. Marek

Department of Biophysics, Institute of Experimental Physics,
Slovak Academy of Sciences, Watsonova 47, 040 53 Košice, Slovakia

Abstract. A new approach supporting the possibility of cluster buckling during
the main phase transition in the lipid bilayer is presented. The elastic energy is
calculated via harmonic approximation which yields the potential minimum in the
case of buckling cluster, if critical cluster size is achieved. The significance of this
event for interbilayer interaction in multilamellar vesicles is discussed.
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Introduction

The elastic properties of lipid bilayers may account for many interesting shape
transformations of the vesicles, e.g. budding (Julicher and Lipowsky 1993), topo-
logical genus (Michalet and Bensimon 1995) and others, some of which are of phys-
iological significance. They also play an important role at microscopic length scale
in the lipid bilayers which exhibit a variety of phase transitions. The best known,
main phase transition, has significantly different behaviour dependent on the vesicle
configuration. Observed transition characteristics show much more cooperativity in
the case of multilamellar vesicles compared to unilamellar vesicles (van Osdol et al.
1991). In our previous work (Marek 1995) it was demonstrated that this difference
might be explained by cluster mediated interaction of neighbouring bilayers. The
presented paper proposes details of the mechanism likely driving this interaction.
It is well known that lipid bilayer surface expands during melting but how this
affects melting of the individual cluster has not been studied so far in spite of its
significance with respect to the bilayer phase transition.

The model

The average molecular area increases during phase transition between the gel and
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the fluid bilayer which is accompanied by mechanical stress at the cluster boundary.
Essentially, this strain can be compensated for in three ways:

I. in-plane stress redistribution between gel and fluid regions of the bilayer at a
constant total vesicle surface,

II. out-of-plane cluster buckling at a constant cluster-gel interface length,

III. liposome growth (both surface and interface expansion).

The following section deals with the first two possibilities in a quantitative
manner through calculation of the bilayer mechanical energies. The last case will
be analysed in more detail in the discussion section. The bilayer is assumed to be
a continuous flat layer. The appropriateness of such a macro-approach has already
been discussed in the literature (Hianik and Passechnik 1995) with the conclusion
that continuum approximation is acceptable at the length scale of several molecules.
Another problem is that bilayer thickness at smaller cluster sizes is comparable with
the cluster linear dimension. Such objects can also bend as it was observed at the
lamellar-hexagonal phase transition in the lipid bilayer. Mean-step at this transition
is formation of fluid bilayer with periodically undulated surface (Bradshaw et al.
1989). The size and the curvature of this ripple are similar to those proposed from
plane deformation of fluid cluster in the gel matrix. In consequence of the continuum
approach, to simplify calculations, we used spherical shape approximation of the
cluster surface.

I. In-plane relaxation

At a constant total vesicle surface area A, there is a mechanical equilibrium state
given by fluid-gel compression balance. An excess area produced by the fluid-gel
molecular areas mismatch will be diminished by redistribution of the mechanical
stress through vesicle surface. Each region, fluid and gel, is partly compressed ac-
cording to their elastic area compression modulus (Fig. 1a). The total compression
energy of vesicle EI in harmonic approximation (Cevc and Marsh 1987) is then
given by

EI =
1
2

(
k1
(∆A1)

2

A01
+ k2

(∆A2)
2

A02

)

∆A1 = A1 − A01

∆A2 = A2 − A02

A = A1 +A2

(1)

where A1, A2 are the actual gel and fluid areas, respectively, and A01, A02 are
their equilibrium non-stressed values. The area compression moduli in the gel and
fluid state are k1 and k2, respectively. Let assign x ∈ (0, 1) as the fluid region
compression coefficient (x = 1 if only fluid region is compressed, x = 0 if only gel
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Figure 1. Schematic illustration of the cross-section of a lipid bilayer (dark region, fluid
cluster; white, gel background; ρ, cluster radius; u, buckling distance; 1/R, cluster surface
curvature): a) cluster expansion; b) cluster buckling.

region is compressed) and ∆A as the total excess area, then

∆A1 = (1− x)∆A

∆A2 = x∆A

EI (x) =
(∆A)2

2

(
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x2
) (2)

The mechanical equilibrium state is given by the conditions(
∂EI (x)

∂x

)
A=const

= 0,
∂A1
∂x
= −∂A2

∂x
(3)

which yields

xopt =
1

1 +
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k1

) (
A01
A02

)

EI (xopt) =
1
2

k2
(∆A)2

A02
xopt

(4)

an optimal fluid region compression xopt and the corresponding deformation energy
EI(xopt). The foregoing statements can be expressed in terms of fluid and gel
molecular areas a01 and a02, respectively, using the following relations

A01 = N1 a01

A02 = N2 a02

∆A = N2 (a02 − a01)

N = N1 +N2

(5)
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where N is the total and N1, N2 the gel and the fluid number of the molecules in
the monolayer. Eq. (4) can be rewritten as a function of the fluid fraction n, using
Eq. (5)

xopt (n) =
1

1 +

(
k2
k1

) (
a01
a02

) (
1
n
− 1
)

εI (n) =
EI (xopt)
2N2

= ε21 xopt (n)

n =
N2
N

ε21 =
1
4

k2
(a02 − a01)

2

a02

(6)

where εI(n), ε21 are the equilibrium deformation energy and the fluid-gel compres-
sion energy, respectively (per fluid molecule). Otherwise, the former is the case for
optimal redistribution of compression between fluid and gel regions, and the latter
when only the fluid phase is compressed.

II. Out-of-plane relaxation

The driving force of the cluster buckling is mechanical stress produced by the com-
pression of the melted cluster in the gel matrix considering the area difference
between the gel and fluid states. We will consider a circular cluster shape with ra-
dius ρ and spherical surface deformation with a radius of curvature R and buckling
parameter u (Fig. 1b). The elastic energy per area unit of the cluster buckling EII
consists of two parts: area compression Ecomp and 2D-bending Ebend, and is given
by the following harmonic approximation (Cevc and Marsh 1987):

EII = Ecomp + Ebend

Ecomp =
1
2
k2

(
∆A (ρ, u)

A0

)2

Ebend =
1
2
kC

[
1
R
+
1
R

]2
= 2 kC

(
1
R

)2
(7)

where ∆A(ρ, u) = A(ρ, u) − A0 and A(ρ, u), A0 are the actual cluster area and
the fluid cluster area without mechanical stress, respectively; and kC stands for the
curvature elastic modulus. From the simple geometric relations (Fig. 1b),

R2 = (R − u)2 + ρ2

1
R
=

2 u

(ρ2 + u2)

A (ρ, u) = 2πRu = π
(
ρ2 + u2

)
(8)
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Let nm be the number of molecules in the cluster monolayer, then

A (ρ, 0) = nm a01 = πρ2

A0 = nm a02 = πρ2
a02
a01

(9)

Using Eq. (8) and Eq. (9),

∆A (ρ, u) = A (ρ, u)− A0 = π

[(
1− a02

a01

)
ρ2 + u2

]
(10)

Hence, from Eqs. (7–10) the elastic energy per unit area is given by

EII (ρ, u) =
1
2
k2

[(
ρ2 + u2

ρ2

)
a01
a02

− 1
]2
+ 8kC

(
u

ρ2 + u2

)2
(11)

and per fluid molecule
εII (ρ, u) = a02 EII (ρ, u) /2 (12)

The equilibrium buckling parameter uopt follows from the condition(
∂EII (ρ, u)

∂u

)
ρ=const

= 0 (13)

which yields the minimum energy of cluster buckling per fluid molecule

εII (ρ) = a02EII (ρ, uopt) /2. (14)

Results

The elastic energy profiles (models I, II) were calculated for the lecithin bilayer as
functions of the cluster size (which reflects the number of molecules corresponding
to the cluster radius ρ) and the buckling distance u, using the experimental values
of elastic modulus k1 ≈ 1 · 10−20 JÅ−2 (DMPC ∼ 20◦C, Hianik and Passechnik
1995), k2 = 0.14 · 10−20 JÅ−2 (fluid lecithin bilayer, Cevc and Marsh 1987) and
kC = 4 ·10−20 J (DMPC ∼ 26◦C, Engelhardt et. al 1985) and average molecular ar-
eas a02 = 68 Å2, a01 = 40.8 Å2 for the fluid and gel phases, respectively. (DMPC =
dimyristoyl phosphatidylcholine) Fig. 2a shows the dependence of the elastic energy
versus buckling distance u at the cluster sizes 80, 120, 180, 240 and 300 molecules
calculated from Eqs. (9), (11), (12). A series of local potential wells are observed.
However, not all correspond to the equilibrium state. The optimal buckling param-
eter uopt was calculated numerically from Eqs. (11), (13) in function of the cluster
size (Fig. 3a). The size effect is well visible via a typical first order behaviour of
the buckling parameter. The global energy minimum at a nonzero u exists above
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Figure 2. a) Dependence of the elastic cluster energy on buckling distance u at various
cluster sizes (inset: the total number of molecules in the cluster). b) Demonstration of
compression-bending balance at the cluster size of 180 molecules (individual components
and the total elastic cluster energy are drawn).

a certain critical cluster size only. This limit is about 105 molecules for the used
values of elastic parameters. The individual contributions to the total elastic en-
ergy of the cluster, compression and bending parts, are illustrated in Fig. 2b. The
equilibrium energy of the cluster buckling was determined by the obtained values
of uopt using Eqs. (11), (14). The equilibrium in the case of the in-plane model
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Figure 3. a) Dependence of the optimal buckling parameter uopt on cluster size. b) De-
pendence of the optimal elastic energies per fluid molecule for the case of in-plane (I) and
out-of-plane (II) relaxation on cluster size (TB is the crossing point between compression
and buckling regions, and TM represents the main phase transition point).

(I, Eq. (6)) depends on the fraction melted n(T ). To obtain this, the experimental
heat capacity data of high purity unilamellar DPPC vesicles (DPPC = dipalmitoyl
phosphatidylcholine) measured at very low scan rates were used (van Osdol et al.
1991). Application of the deconvolution method (Freire and Biltonen 1978) on the
excess heat yields the temperature dependence of the average cluster size σ(T ). In
order to compare model I and II of the mechanical stress relaxation it is necessary
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to express Eq. (6) as a function of the cluster size using both foregoing functions.
The corresponding curves are illustrated in Fig. 3b. Two significant points are
shown, the chain melting transition temperature TM and intersection point TB of
in- and out-of-plane curves. The saturation values of both curves are the same:
εI(xopt = 1) = εII(uopt = 0) corresponding to the same starting mechanical state
after cluster melting.

Discussion

In order to analyse the possible evolution of the mechanical state of a vesicle, it
is necessary to consider not only the energy of bilayer deformation but also the
process of molecular rearrangement in the lattice and therefore the time scale. A
big difference between the behaviours of the fluid and the gel phases, as for their
mechanical properties, should be taken into account. According to experimental
observations (Hianik and Passechnik 1995), the gel bilayer is much stiffer com-
pared to the fluid one. The lipid flow invoked by the strain at the phase boundary
is significantly slowlier in the gel state as follows from a comparison of the corre-
sponding diffusion rates (Ivkov and Berestovsky 1981). Hence, from the time-scale
point of view, local lipid rearrangement near the interface is preferred (Cevc and
Marsh 1987).
It should be noted that clusters are dynamical objects which change their

size and position (Mouritsen 2000) with an average lifetime τ in the region of
10−3–10−4s (Groll et al. 1996). During this time, according to the gel diffusion rate
D ∼ 10−10 cm2s−1, the lipid rearrangement attains the length-scale√Dτ ∼ 101 nm
near the interface (Cevc and Marsh 1987), which is two orders less than the vesicle
perimeter (∼ 103 nm). In this sense, the global molecular rearrangement necessary
for the liposome growth in the gel phase (as a way of extra area compensation) is
too slow regarding the cluster lifetime which makes this possibility less probable.
In addition, according to the cluster fluctuations, this process should be periodic,
i.e. a permanent lipid flow should occur along the vesicle surface accompanied with
energy dissipation.
Hence, from the time-scale point of view, the first two types of the excess area

compensation are favourable – stress redistribution between the gel and the fluid
bilayer regions and out-of-plane cluster buckling. Because of the sound velocity
in the lipid bilayer the former is fast enough to follow the changes in the clus-
ter distribution. However, this is not possible without some local rearrangement
near the closed cluster-gel interface, due to its length-change at cluster extension-
compression. This requires some lipid flow in the cluster neighbourhood which
decelerates this process but does not eliminate it in the time-scale of the cluster
lifetime. Thus, the equilibrium energy calculated in the previous section (I) should
be understood as the lower limit. The real value is always larger since the strain fails
to spread over the whole vesicle surface, and so the relative gel area compression
and consequently the elastic energy are increasing.
In the latter case (II), the length of the interface is assumed to be constant, the



Cluster Buckling 413

cluster area increases and surface curvature appears. The harmonic approximation
of the elastic energy was used (Cevc and Marsh 1987) with a constant elastic
modulus. A contingent non-linear behaviour occurring at the larger curvatures or
compressions might become manifest at the beginning of compression and the final
part of bending-curves, because a larger curvature occurs at a smaller compression
and vice-versa (Fig. 2b). It will result in an increase of the absolute value of the total
elastic energy and could shift, but should not suppress, the local potential wells
in the elastic energy and thereby the existence of buckling. The area mismatch
between the fluid and the gel phases is compensated for by the cluster buckling
connected with getting the cluster surface out of the bilayer plane. This effect is
hindered by a repulsion force from the bilayer bending. The final cluster state is a
result of the balance between bilayer compression and bending (Fig. 2b).
Fig. 3b shows both dependencies of the equilibrium mechanical state of the

bilayer regarding the average cluster size. While the buckling curve is constant
up to some critical point after which it breaks and falls down, which corresponds
to the first order behaviour of buckling parameter uopt (Fig. 3a), the in-plane
curve continuously increases and, at some temperature TB, crosses the previous
curve. This point separates two regions: T < TB preferring the in-plane stress
redistribution between the gel and the fluid phases (model I), and the second one,
T > TB where out-of-plane cluster buckling occurs as the preferred state (model
II). In such a way, the real vesicle state evolution could be a combination of in-plane
and out-of-plane relaxation depending on the average cluster size.
There is indirect experimental support to the proposed cluster buckling (model

II) as a mechanism of mechanical stress relaxation during melting from the gel to
the fluid phases. Analysing the differences in the heat capacity between uni- and
multi-lamellar vesicles it was found that the interaction between the bilayers is very
strong (van Osdol et al. 1991;Marek 1995). The models of liposome growth (III) and
stress redistribution (I) provide only weak interaction because the clusters remain
in the bilayer plane. On the other hand, cluster buckling and out-of-plane moving
(II) causes a steric contact with the adjacent bilayer and might more likely explain
the founded decay of the cluster displacement freedom on the vesicle surface (Marek
1995). This means that the neighbouring bilayer is a strong barrier for the melted
cluster and relevant repulsion forces product strain in a portion of the opposite
bilayer which increases the local probability of a new cluster forming immediately
above and below the cluster buckling. In such a way, groups of out-of-plane clusters
occur in directions upright to the vesicle surface which is connected with a large
increase of the transition cooperativity as has been observed (van Osdol et al.
1991).
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