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An Active-Medium Model of Organic Substance 
Transformation in Soil and Its Dynamic Propert ies 

P IVANOV, V T V L R D I S L O V AND A ZAIKIN 

M V Lomonosov Moscow State University, Faculty of Physics, 
Department of Biophysics, Vorob'cvy Gory, 119899 Moscow, Russia 

A b s t r a c t . An analysis of the behaviour of the soil system considered as an active 
medium with distributed energy sources was undertaken This approach enabled 
the authors to build a heuristic model of soil which accounts for processes of or
ganic substance production, migration and utilisation The soil body is presented 
as a spatially distributed trophic chain with non-linear interactions of adjacent 
links The level of this non linearity appears to be the key parameter determining 
the dynamic behaviour of the model system m one-, two- and three-dimensional 
cases The conditions for the existence of pulse-generating and autowave modes 
in this system were determined by computer simulations Of particular interest is 
the behaviour of damaged soil, especially its self-regeneration potential Inocula
tion autowave was proven to restore the initial s tate of the soil if two adjacent or 
separated trophic links fall out Possible ways of the further development of the 
proposed model are also discussed 

K e y words : Soil model — Trophic chain — Organic substance distribution — 
Autowave 

I n t r o d u c t i o n 

When compared to the atmosphere and the inland waters, soil is much more vul
nerable to anthropogenic influences due to the heterogeneity of its physicochemical 
structure and diversity of processes responsible for the migration of different com
pounds This fact makes theoretical studies of soil systems greatly important while 
significantly complicating such investigations 

The essential results obtained from models of soil are expected to be estima
tions of the spatio-temporal characteristics of pollutants migration and soil self-
purification m local areas with peculiar physicochemical parameters, the evidence 
for the dynamic behaviour of the system and some recommendations on the regen
eration of the initial s tate of soil biocenosis 

Correspondence to Prof V A Tverdislov, M V Lomonosov Moscow State Uni
versity, Faculty of Physics, Department of Biophysics, Vorob'evy Gory, 119899 Moscow, 
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The fragmentary nature of the information available on the structure and the 
concentration dynamics in soils presents invincible difficulties when one attempts 
to construct an imitative model of the soil body That's why in this paper we put 
forward a heuristic model of the soil system which takes into account the basic 
mechanisms of organic substance transformation and makes it possible to analyse 
this process and accompanying phenomena in detail 

Methods 

Theoretical model of distributed trophic chain 

The basic approach to the development of the quantitative soil model is to con
sider it as an active medium, i e a system with distributed energy sources where 
metabolic processes of organic substance production and utilization play a key role 
in their migration To be more specific, we will assume that 1) primary organic 
substance is produced only in a thin surface layer which gives start to trophic 
chain penetrating downwards into the soil, 2) the distribution of organic substance 
is non-uniform in space and time, and 3) the destruction processes involve biologi
cal as well as physicochemical stages, especially chemical degradation and transfer 
with hydrodynamic flows (often of turbulent nature) 

The authors of the block model of organic substance transformation in soil 
(Kerzhentsev et al 1988, Kovda et al 1990) assumed that the role of the trans
former links is played by soil horizons In that case, a major part of organic sub
stance processed at a given level is transferred to the next one while a minor part 
is mineralized and moved to the atmosphere, hydrosphere or phytome 

When modelling the transformation of organic substance in soil we used sim
ilar assumptions (Zaikin and Rudyakov 1989) but, contrary to the aforementioned 
papers, "functional units" in our model are presented by trophic chain links rather 
than by soil horizons In this case organic substrate while being partially mineral
ized is transferred from one link to another The mineralization process is described 
by single term with no detailed specification of its paths (the final state of min
eralized substance, for instance) Contrary to Kovda et al (1990), the mobility of 
tiansformers as well as the rate of the formation of transformers "igniting" densities 
(i e , densities guaranteeing the possibility to restore catabohc chain functions in 
reasonable time after an interruption in anabohsm) have been added Basically, the 
resulting model can be considered as a modified distributed Lotka's scheme (Lotka 
1910) adapted for a large (and infinitely large in the limit) ensemble of predators 
and preys 

The mobility of chemical links in the chain of transformers can be properly 
allowed to by diffusion terms with coefficients of molecular or turbulent diffusion 
(Kadantsev et al 1997) In the absence of significant taxis, random components 
of movements of separate individuals in each biological link can also be taken into 
consideration by diffusion terms Therefore the system of the model equations foi 
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trophic chain with n links takes the form 

dUJdt = -F2{UUU2) - faUx + £>iAC/i 

dU2/dt = Q 2 + F2(U2,U1) - F3{U2,U3) - 02U2 + D2AU2 

dUk/dt = ak+Fk(Uk,Uk^) - Fk+1(Uk,Uk+1) - pkUk + DkAUk
 ( 1 ) 

dUJdt = an + Fn{Un, Un-!) - (3nUn + DnAUn 

where Uk = Uk(x,y,z,t) stands for local partial density of organic substance at 
the fcth link, ak is the weak influx of Uk which provides an "igniting" density of 
substrate utilized by that link, Fk and Fk+i describe the rate of exchange between 
adjacent links, the term (3kUk denotes the rate of mineralization, Dk is diffusion 
coefficient, and A is the Laplacian 

The above model means that soil is considered as an active medium and there
fore can be expected to demonstrate dynamic modes typical for other active media 
The unique feature of this system is its successive type, that is, energy necessary 
for excitation to move is transferred in a step-by-step mode 
Computational procedures 

A thorough investigation of the model (1) was carried out by computer simulations 
based on mesh algorithms For the pointwise system (Eqs (1) with no diffusion 
terms) the simplest explicit computational scheme was used Let tt — IT, I = 
0, ,7, denote the points of the mesh along the temporal axis Then, the set of 
difference equations approximating the pointwise version of model (1) takes the 
form 

- i ^ = -F2(Ul,U2
!)-p1Ul 

T 

(2) 
JJl+l _ TJl 

" T
 U = OLn + Fn(U

l
n, C/A-l) - PnK 

where i = 0, , / During computer simulations the latter equations were solved 
with the initial conditions 

Uk\t=o = ak/pk (3) 

and in some cases with the additional condition 

tfi|í=ÍT = (E/i)o (4) 

meaning that there is constant perturbation in the first link at time interval [0, T] 
The solution to Eqs (2) can be written in explicit form 

Ul+1=U{-r{F2{UlUl)+^U[] 

(5) 

Wn
+1 =U^ + r[an + Fn(U'n, Wn_ľ) - PnU'n] 
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where the values Uk, k = 1, , n, should be obtained from initial conditions (3) 
When analysing the distributed system (model (1) with diffusion terms) the 

mam disadvantage of the explicit algorithms lies m their instability, as originally 
shown by Kurant et al (1940), this scheme demonstrates a stable behaviour and 
other "good" properties only if r < h2/2 where h denotes the mesh step for the 
spatial coordinate Taking this into account for the distributed model we use im 
phcit algorithms which are rather stable over wide regions of mesh parameters 
If ti = IT, i = 0, , I, and xm = mAx, m = 0, , M, stand for temporal and 
spatial mesh respectively, then for the two dimensional soil model (where the only 
spatial axis x is directed downwards) the implicit difference scheme takes the form 

h? 
Í2((t / i) 'm I(^2)^)-/9i(£/i) ,

m 

an + Dn — h 
r hz 

(6) 

+ Fn((UnYm,(UnYJ~Pn(UnYm 

with the same initial conditions as for system (2) and the boundary conditions 

Uk\x=0 = Uk0, dUk/dx\x=0 = Vk (7) 

The solution to this boundary problem was calculated for consequent time 
layers denoted by indices i Namely, Eqs (6) were first passed along the a;-axis for 
any fixed temporal layer The difference equation for the arbitrary variable Uk at 
the (? + l)th upper layer looks like 

(uky+l1 = 2(uiy+1-(uky+l1+ 

+ —{r-'mY^1 - (ukym] - Fk((ukym, (uk 1ym)+ (8) 

+ Fk+1((ukym, (uk+lym) + pk(ukym} 

and calculations should proceed from the smallest values of m to the biggest ones 
When for a given (i + l)th layer all values Uk have been obtained (though the 
boundary pioblem (6)-(7) was formulated foi half-lme x > 0, calculations along 
the x axis were stopped after the values Uk decreased to the base "igniting" level), 
the algorithm goes to the next layer 

The situation is even more complicated for the three-dimensional system Since 
in this case the number of calculations skyrocket exponentially, we used special 
techniques called alternative directions (Peaceman and Rachford 1955, for more 
details, see Fedorenko 1994) in order to split the upper layer equations into two 
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independent systems for coordinates x and y The mam idea of the alternative 
directions method when applied to two dimensional equation m partial derivatives 

auk fd2uk 52[/i\ . ., TT TT 

^ = M ^ + " w J + / Á Í , a ! ' t f ' *' *+l) (9) 

is to build a difference scheme consisting of two sets of "orthogonal" steps Let once 
again index m to numerate mesh cells in x-direction and index I to play the same 
role for y-axis At the steps of the first kind the upper layer is involved only when 
differentiating with respect to x 

T =Dk h* + 

^ n (UkYml-1-2(ukym, + (ukyml+1 , (10) 
+ Dk J? + 

+ Mt,x,y,(ukym„(uk+1yml) 

while the next step should be constructed in much the same way but with exchange 
of x and y 

; = Dk v + 

^ n (U^U-2(U,Y:1 + (UKY^+1, (H) 
+ Dk -2 + 

+ h(t,x,y,(uky+),(Uk+iy+)) 

The upper indices at (Uk) in Eqs (10) and (11) indicate that if all values (Uky 
are known, their values at the (i + l)th layer can be obtained in a similar manner as 
in the system with a single spatial coordinate (see Eq (8)) using standard boundary 
conditions 

We give so much place to description of computational methods used because 
their choice is of a prime importance in numerical solution to non-lmear differential 
equations in partial derivatives As it was pointed out by many authors (see, for 
example, Fedorenko 1994), inadequate difference schemes can lead to numerical ef
fects which bear no relation to the system under consideration The main criterion 
here consists in the convergence of meshed functions to an exact solution, but m 
the overwhelming majority of cases such a convergence could hardly be proven 
However, what we can definitely note concerning the aforementioned algorithms is 
that they provide a good approximation of the exact solution Moreover, the use 
of implicit difference techniques while making more complicated equations for so 
called upper layer gives a solid ground to expect a high degree of stability of nu
merical solutions An additional argument for this statement arises from computer 
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simulations themselves: two- and fourfold decreases in the numbers of mesh steps 
produced only minor quantitative changes in functions Uk while their qualitative 
behaviour remained the same. 

During computer simulations the parameter P varied from 0.7 to 1.2; typical 
values for a lied in the region 10 - 7 - 10~6 mol/cm3/s; variable (3 was changed by 
more than an order of magnitude (between 0.001 and 0.02 s""1); for the diffusion 
coefficient we used different values from the interval 2 x 10~5 < D < 3 x 10"2 

cm2/s. The numbers of trophic links in different variations of the basic model (see 
below) range from a few dozens to several hundreds. Typical numbers of mesh 
points for every axis were 512 or 1024, but in some cases, as it was already said, we 
augmented this value by a factor of two to four in order to examine the stability and 
reproducibility of our results. The peculiar values of model parameters in different 
cases are pointed out in the Figure legends. 

Results 

The steady-state distribution mode; characteristic time, diffusion coefficient 

The exponential decrease of the total organic substance density with depth (Fig. 1, 
right) can be obtained from (1) without specifying the particular type of interaction 
functions Fk. Combining all equations of (1) with equal values of ak, (3k and Dk 

for different k we have: 

dM*/dt = a(n - 1) - /3M* + DAM* (12) 

where M* is the total mass of organic substance distributed in volume which is 
determined by the boundary conditions; n, as before, denotes the number of links. 
Let M* = a(n - l)//3 + M and AM = d2M/dh2, where depth h is measured from 
the soil surface. Then, 

dM/dt = -f3M + Dd2M/dh2 (13) 

To obtain the steady-state density distribution let's specify the boundary con
dition on the surface: M\h=o = M0. Then, the solution in the half-space h > 0 
takes the form 

M = M0 exp {-/31/2D~1/2h) (14) 

The depth he at which M = M0/e could be estimated experimentally. In (14) the 
parameter (3 equals 1/T where r is time constant for soil community. For chernozem 
earth characterized by exponential density distribution similar to that presented in 
Fig. 1, T equals 400 years (Kerzhentsev 1990). 

A trophic link consists of a decomposer and the organic substance to be trans
formed (in the proper phase for subsequent processing). The mass of the decom
poser is typically considerably smaller than that of the organic substance, and in 
many cases hardly amounts to 1% of their combined mass. The mobility of the or
ganic substance at the given link is obviously not dependent upon the mobility of 
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Figure 1. Steady-state distribution of organic substance in the trophic chain after the 
transient process Left - trophic chains at different depths h (each point corresponds to a 
single link) with at least "igniting" concentration of substrate at each link The vertical 
bars at each point are proportional to substrate density at the corresponding link Right 
exponential distribution of the total organic substance density with depth The parameters 
of the model (1) P = 0 8, a = 10" 7, /? = 0 0015, D = 0 03 n = 125 

the decomposer, and is largely determined by the diffusion coefficient and the level 
of porosity of the medium The effective diffusion coefficient of a porous medium 
is determined as 

D* = D/c (15) 

where c is the porositj coefficient equal to the total volume of pores in a unit of the 
medium volume So, the highly porous, "springy" chernozem should have a longer 
time constant t h a n denser soils 

The dynamic modes in the pointwise trophic chain 

To study the dynamic behaviour of the soil model, simulations were carried out 
under the following assumptions 

1) The soil system is uniform meaning the parameters in Eqs (1) are the same 
for all links, 

2) Functions Fk were set to have the form Fk = "ykUk~\Uk with 7*. = 1 for 
all k. 
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3) All trophic links except the first one are of catabohc nature The first link 
plays an anabolic role and the number of individuals belonging to it was set to be 
constant during the given time period (the latter assumption is equivalent to the 
boundary conditions of the first kind) Furthermore, when studying the dynamic 
behaviour of a trophic chain with no regard to space coordinates the system was 
assumed to be pointwise, namely the diffusion terms in Eqs (1) were entirely 
ignored (approximation of so called ideal kneading reactor) 

The initial s tate of the trophic chain is characterized by stationary values of 
"igniting" concentrations in each link Uk = ak/(3k Short-term perturbat ion at the 
first link generates moving pulses with an amplitude smoothly decreasing to zero 
As it is evident from computer simulations, in the case of a prolonged perturbation 
the system behaviour can be of different types 

1) When coefficient P is below 0 9 the model displays a smooth decrease in 
organic substance density along the chain, 

2) An increase of P to 0 95 0 97 leads to the appearance of a source of pulses 
that are periodically generated by first links (Fig 2) These pulses corresponding to 
the excitation states of two adjacent links are at tenuating with a gradual decrease 
in amplitude and velocity causing the density to progressively reach the "igniting" 
level, 

3) A further increase in value of P (to the region of P > 1 05) brings about 
the mode of intermittent generation while periods of bursts remain the same then 
internal structure changes drastically from one link to another 

The dynamic modes m the distributed system (two-dimensional system) 

Addition of one spatial dimension to the just considered scheme makes it possible 
to tiace the movement of organic substance downwards into the soil and the ap
pearance of plane waves Furthermore, it allows to elucidate the influence of short-
and long-term perturbations on the system, the transient processes and the steady-
state mode In model (1) diffusion coefficients and parameters (3k tha t determine 
the level of mineralization are essentially the scaling factors As became apparent 
from numerical experiments, parameter P plays a more critical role because small 
variations in its value result in qualitative changes of the dynamic mode (bifurca 
tions) 

Figure 1 (left) illustrates the steady-state distribution of organic substance 
with the depth of soil and the length of the trophic chain settled after the transient 
process Some peculiarities of this s tate deserve to be mentioned 

1) Transformers of first trophic links localized near the soil surface process 
organic substance themselves thus preventing it from penetrating downwards, 

2) Decomposers of last links which obtain small quantities of the substrate 
display effectively the same behaviour, 

3) The peak of density is penetrating deep into the soil while moving along 
the chain and diminishing m amplitude As a result the maximum depth is reached 
by substantial quantities of organic substance belonging to intermediate links 
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Figure 3. Formation of waves at the edge of the trophic chain and their penetration along 
the chain and downwards into the soil. The vertical bars at each point are proportional 
to substrate density at the corresponding link. (A) An increase in value of P up to 0 95 
leads to the emergence of the wave source. (B) Further increase of P (to 1.05) causes 
stochastization of waves and their penetration to larger depths and distances along the 
chain. Other parameters of the model (1): a = 10" 7 ; /3 = 0.0015; D = 0.03; n = 75. 

When P = 0.95 and other parameters of model (1) take their values as in Fig. 1, 
the system generates rapidly damping waves which move on the same trajectory 
as density peak in the case of P = 0.8 described above (Fig. 3A). Further increase 
in P to the value 1.05 leads to stochastization of waves with a concurrent slowing 
down of their at tenuat ion (Fig. 3B). 

Unhealthy conditions of the soil system: falling out of a link 

One or more links can fall out from the trophic chain as a consequence of infec-
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Horizontal coordmate 

Figure 4. Inoculation autowave in the two-dimensional system with two missing links 
(k = 4 and k = 5) in the region x > 12 The width of the horizontal lines is proportional 
to substrate density at the corresponding chain link for the given spatial point The 
parameters of the model (1) P = 0 7, a = 10~6, j3 = 0 02, D - 2 x 10~s n = 28 

tions or mechanical damage during agricultural activity. In some cases selective 
suppression or destruction of separate links by pollutants of anthropogenic origin 
is observed. For the model system the falling out of one link (ak = 0) gives rise to 
accumulation of organic substance in previous ones because the lacking link forms 
an impermeable boundary. What ' s more important , the falling out of a link causes 
non-uniformity in functional roles of other links. As computer simulations reveal, 
odd links of the trophic chain (counted from the impermeable boundary towards 
the beginning of the chain) accumulate organic substance while even links increase 
the rate of its processing (see the right bot tom region of Fig. 4). 

Inoculation as a method of healing soil illness; inoculation autowave 

For an inactive producer the most natural but rather expensive way of fallen link 
restoration on arable land is to sow it with an appropriate species. If the producer 
is in active state this procedure can be simplified by seeding the species only at the 
edge of the field; then an inoculation autowave will complete this process for the 
whole field. 
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- * - • -

Horizontal coordinate 

Figure 5. If missing links are not adjacent (k = 6 and k = 16, as in this Figure) their 
inoculation takes place with a time delay The parameters of the model (1) and the number 
of mesh points are identical to those in Fig 4 

Figure 4 presents the result of computer simulations for a trophic chain with 
two lacking links. The model medium was chosen to be a long thin layer with a 
penetrating plane perturbation wave. The initial s tate remained practically un
changed in region x > x2 except tha t the link with a significantly increased density 
was formed in front of the fallen ones. To disturb the system, small quantities of 
lacking species were added in the vicinity of point x = 0. After the completion of 
the regeneration process an inoculation autowave of a constant velocity and shape 
was generated in region x\ < x < x2. Behind the wavefront the s tate of the system 
was restored to its original form. In the case of a fallout of two separated links the 
main result of the simulations is quite predictable (Fig. 5): at the spatial region 
determined by the t ime difference between the moments at which the inoculation 
of the lacking links begins one can reveal an intermediate stationary state. 

Inoculation autowaves in the three-dimensional system 

Results similar to those presented in Fig. 5 were obtained with the full-dimensional 
model (three spatial coordinates). In this case circular inoculation autowaves ap
pear in the planar layer but their major features (distribution of organic substance 
density, for example) remain the same. Figure 6 illustrates organic substance den-
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Polar coordinate 

Figure 6. A portion of the detailed organic substance density distribution during the 
process of missing link inoculation by circular autowaves (three-dimensional model, au
towave profile is shown in projection- to the radial axis of the polar coordinates) The 
parameters of the model (1) P = 0 7, a = 10"6, (3 = 0 02, D = 2 x 10"5, n = 12 

sity distribution at the wavefront (for one missing link): the significant shortening 
of the trophic chain affected some quantitative characteristics of the autowave while 
its general nature remained unmodified. 

Discussion and Concluding Remarks 

The comparison of some results obtained for model (1) with observations on real 
soil systems makes it evident that considering soil as a distributed active medium 
could quantitatively forecast key parameters of toxicants' penetration into the soil 
and the processes of its regeneration. These results can be extended beyond the 
world of organic substances taking into account that many inorganic compounds 
and even heavy metals are involved in metabolic pathways. (A typical example: 
the fractional analysis of soil samples suggests that approximately 60% of lead 
and cadmium m soils are incorporated into organic substance (Zolotareva 1983)). 
Some new findings on the dynamical behaviour of soil systems as well as theoretical 
explanations of joint non-additive action of toxicants and their non-uniform spatial 
and temporal distribution observed within years after the penetration into soils can 
also be obtained by adapting model (1) to specific real conditions. 

Leaving aside these practical implications, the different dynamic modes re
vealed for the non-linear model (1) are of particular value on their own. Treating 
of soil as an active medium made it possible to discover several modes of behaviour 
typical for dynamic systems, from pulse generation to penetration of stochastic 
waves to autowave phenomena. Amongst unexpected results it is worth to note the 
effect of non-uniform organic substance distribution between even and odd links of 
the trophic chain. This pattern, illustrated in Figs. 4 and 5, could be interpreted as 
the ability of the soil to form complex structures, though in this case they can be 
registered in, say, a community of microorganisms rather than in space. In general, 
such a potential is typical for dynamic systems. 
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Considering different dynamic modes in the soil system it should be empha
sized that the key role in determining its behaviour is played by the degree of 
non-linearity of the model; even small variations of parameter P can cause bifur
cations and transition of the whole system to a new mode. At the same time other 
parameters can vary in rather wide regions with no catastrophic consequences 
(the peculiar values of a, f3 and D in Figs 1-6 were chosen mostly for illustra
tive purposes) We should also note that different dynamic modes were revealed in 
model system just for the simplest interactive functions Fk(Uk;Uk-\) Therefore, 
one could expect to uncover some new dynamic features of the model when taking 
these functions in a more complicated form. However, this task lies well beyond 
the scope of the present paper. 

Another way of the further development of the model lies in the transition from 
the analysis of a single trophic chain to quantitative description of multiple chains 
acting in parallel (the model of a trophic net) additional structural components 
and links in this case may bring about new peculiarities of the dynamic behaviour 
of the system. Even more, our approach enables to extend the consideration of the 
soil as a distributed active medium to the trophic chain itself. From mathematical 
point of view such consideration is equivalent to going from Eqs. (1) to infinite 
number of trophic links characterised by density function 
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