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Cooperative Dynamics of Quasi-1D Lipid Structures
and Lateral Transport in Biological Membranes
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Abstract. A model for the dynamics of quasi-1D Lipid structures in brological
niembranes 1s proposed The model takes into account mteractions between the
lipid heads and hydro-carbon chains, the description of their relaxation dynamics
being based on the phenomenological Ginzburg-Landau approach It 1s shown that
mn lateral hnear stiuctures of lipids, a soliton-like excitation can propagate with
constant velocity The latter 1in turn may provide for lateral transport of matter
and for membiane conformation changes
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Introduction

Traditional approaches to description of biological membranes as mechanically pas-
sive systems 1n thermodynamic equilibiium are not always adequate Cell mem-
brane 1s a boundary structure that provides for irreversible processes of energy and
mass exchange between the cell and 1ts environment During last few years a spe-
cial role of quasi-1D structuies of biosystems 1n long-distance transfers of energy,
mass and information has been revealed 1 a number of investigations (Bishop and
Schneider 1978, Collins 1983, Davydov 1984, Hianik and Vozar 1985, Scott and
Davydov 1985, Bolterauer et al 1991, Hianik et al 1996) Many phenomena 1n
cell behavior such as differentiation, aggregation into colonies, growth control, ef-
fects of hormones and poisons, allosteric effects, etc involve membranes and are

Correspondence to Dr V A Tverdislov, Department of Biophysics, Physics Faculty,
Moscow State University, Vorobyevy Gory, 119899 Moscow, Rusia
E-mail tverd@b10522b phys msu su



312 Kadantsev et al

cooperative A detailed knowledge of possible characteristics of collective behav-
10r of quast-1D structures in multicomponent bilayer hipid membranes 1s therefore
mmportant

Biological membranes are known to be dynamic cooperative systems (Aloia
1983, Rubin 1987) Both biological and artificial membianes have two basic states
rigid gel, or 2D crystalline state, and melted, or hiqud crystalline state The gel-
hiquid crystalline transition corresponds to the lipid molecules conformation chang-
ing from totally trans- to a chaotic one The transition temperature depends on
lipid composition of the bilayer (Aloia 1983, Rubin 1987), and the average mem-
brane surface area per molecule incieases during the transition from 048 to 0 58

nm?

Under quasi-1D structures we understand linear arrays of acyl chains of lipids
(cf Fig 1), inear defects of the bilayer structure, and boundaries of domains formed
during lateral separation of lipids 1n the bilayer formation process Such stiuctures
wele found in biological membranes with the help of X-ray diffraction and electron
microscopy (Aloia 1983) Then existence was also confitmed by computer modeling
(Goltsov 1994)

Figure 1. One possible model of a mixed phase
of phospholipid and cholesterol (circles represent
acyl chains that form lnear structures) (Aloia

1983)

1 lam g

In this paper, some theoretical concepts of cooperative processes 1 quasi-1D
lateral structures of multicomponent lipid membranes are developed The mem-
brane 1s viewed as being built of two subsystems lipid heads (LH), and lipid tails
(LT) In such a two-component structure collective excitations are considered that
can mediate long-distance interactions between membrane-bound macromolecules
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Dynamics of LH and LT subsystems interaction

Phase transitions 1n hpids are accompanied by conformation changes of their mole-
cules Lipids melting may be considered as a conformation change as 1t coriesponds
to rotational 1somerization of the lipid molecules The eneigy level difference of
gosh- and trans-conformations 1s small (2-3 kJ/mol) in comparison with the energy
barrier between them (12-17 kJ/mol)

The LT-subsystem dynamics may be described with the use of Ginsburg-
Landau hamiltoman (Bolterauer et al 1991) At the same time phase transitions
mn hipids may be described 1n terms of the Landau phenomenological theory (Gins-
burg and Landau 1950) Any general appioach to such transitions always includes
some kind of order parameter 5 which takes non-zero values only 1n the ordered
phase Then, the free energy of the system F'(n,7) near the transition point may
be spread into power seties

a a a

F(U,T)=‘I’(n)=ao+a1n+72nz—§3n3+fn4 (1)

where coefficients ag, ,a4 may be found from the dependence of T. and n on
lateral pressuite p (Rubin 1987) The order parameter 1s defined as (Rubin 1987)

n=(5r—8)/(Sr — Sc), (2)

wheie Sp and Sg are surface areas per molecule 1n iquid crystalline and gel states
The surface aiea per molecule 1 the 1eal state of a lipid 15 S, and 1t incieases with
the transition of the hipid molecules from the tians-state into a disoidered one

Fuither elaboration of this approach was used for the modeling of the system
parameters influence on the phase transition characteristics For example it could
be shown, that the phase transition temperature strongly depends on parameters
affecting the LH-system charge (1e pH, 1onic strength, adsorption of 1ons, etc)
m the case of chaiged ipids, whereas theie 1s no such dependence for zwitterionic
lipids Therefore, the correct description of phase transitions in LT-subsystem must
include 1nteractions between the LT- and the LH-subsystems

These mteractions may be accounted for by proper choice of the free en-
ergy terms The Ginsburg-Landau free energy of an LT-system interacting with
an LH-system may be presented as the sum (approximated by an integial) of indi-
vidual molecules contributions Interaction between adjacent molecules taken into
account, the corresponding functional 1s

Finp,T) = 7 [ do [0 + (w07, (3)

where z 1s the molecule coordinate With the use of appropriate scaling and dis-
placement of the coordinate system origin 1t 1s possible to substitute coordinates
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for new ones (7, F) so that

Fotio.T) = 1 [ax x-S+ Bt Jevip (@

where A = p(Sr — S¢), p stands for lateral pressure, o = ao(T. —T'), oo and 3 are
positive and 1n piactice do not depend on temperature, v 18 diffusion coefficient for

the order parameter The new vanable, 7, depends linearly on the old vanable, 7
3 2

The free energy in (4) has one mimimum 1f <a7 —) > 0, and two minima

cortesponding to gosh- and trans-conformations of the hLpid molecules if
3 2
« A
<2— + I) < 0 From the relaxation equation for the order parameter 7 (Haken
{
1978)

n = —

oF (35, T)
R

1t 15 possible to denive the tune-dependent Ginsbuig-Landau equation

(5)

e = =X+ aff — Bi° + Ve, (6)

which desc.1bes spatio-temporal changes of the o1der parameter 1n the LT-system
Displacement of LH from equilibrium may be obtained from the eneigy oper-
ator tor a chain of LH

1 m -
H=1 [ a2+ i + V200, ")

where m 1s the LH mass, Vy = afd;, Oy and ; are the characteristic frequencies
of the LH-giid The dynamic equation corresponding to this operator 1s

mpg + mﬂgp — mV02pM =0 (8)

In the presence of particles and exteinal fields with which the LH interact Eq

(8) should contain additional terms describing viscous friction and other interac-
tions

mpy +mQ3p —mlp, — mVipee = f (9)

Thus, the dynanucs of the LH chain changes We will confine ourselves to two
limit cases of extiemely low and extremely high friction

In the first case, (I' — 0) in the absence of interaction between LH and LT
(f =0) equation (9) describes longitudinal (acoustic) waves with the dispersion

0P =2+ Vi (10)
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The other case, (I' 3> 0) corresponds to a chain of weakly interacting particles,
their motion caused by external forces being overdumped

mQ2p —mlp, = f. (11)

Interaction of LT with polar groups undergoing displacement p as a result of
conformational changes in LT system may be written as:

1
W= —/XpVﬁdx. (12)
a
Then, the force with which LT acts on polar groups is
f==xVi, (13)

where the interaction constant y in general case depends on the surroundings of
the membrane.

Substituting (13) into Eq. (9) when I' — 0, and into Eq. (11) we obtain
equations of motion for the LH chain which intertacts with the LT system both for
free (no friction) and overdumped cases.

In the absence of friction, most interesting is the case of constant propagation
velocity, V = V. We obtain from (9)

X
mS23

i.e. the polar groups displacement is completely defined by the order parameter

changes. In the case of overdumped motion of polar groups as defined by Eq.(11)
this relationship also holds under condition that

03
Ta > 1. (15)
The meaning of (15) is that the LH system characteristic time 7, = '/
must be much smaller than the LT system time constant 7, = @~!. At this kind
of “adiabatic approximation” p; = 0, which leads to (14). It should be noted that
the closer T to T, the better this approximation.
The Ginsburg-Landau free energy F for the system of LT interacting with
LH can be written down as the sum of free energy Fy of LT subsystem without
interaction with LH (4) and the energy W of LT interacting with polar groups (12).
Then, from (12) with (14) taken into account we get

~ 1
Fip D) =Fo+ W=7 [ [Aﬁ S B Dewar], )
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22
h = 1-
where vy = v ( mﬂév)

The tume-dependent Ginsburg-Landau equation can be obtained by substitut-
g of (16) into (5)

it = =X+ aff — B + Yoflex (17)

This equation describes spatio-temporal changes of the order parameter in
the LT system interacting with the LH grid when (15) 15 true It has steady-state
solutions 7j, = fjoq, (1 = 1,2,3), where 7 = ++/a/3 and ¢, are the 100ts of the
polynom

g+ -Q=(1—a)lg—q)(g—a) (18)
with ¢ < qx < g3, and Q = )‘\/ ﬂ/ad < 2/\/ﬁ: Qmax

Besides equation (17) possesses a soliton-type equation which coriesponds to
excitation like a solitary wave of kinks that propagates at a constant speed

=M (19)

(1 —Vi)’
1 4 exp KN

S 4TI (20)
(i1 = m)VB

defines the soliton’s width and consequently 1ts localization

The wave described by (13) has the pecuhar featuie that 1t may only have
one certain speed at each value of external force, e g A In particular, when there
13 no external force (A = 0 1n our case), solution to equation (19) corresponds to
a 1esting kink When there 1s external force the kink moves at a definite speed,
otherwise 1t loses ene1gy and stops because of viscous friction

A kink moving in the LT-system induces a region of deformation in the LH
system which moves together with the kink The spatio-temporal structure of the
defect 1 the quasi-1D lateral giid of the hpid molecules heads may be found from
(14) and (17)

7~7sol(rat) = ﬁl +

where

A (72 — 71) 2 [TV
_ z__- 21
Psol(z, T) = 1 Q% sech ( 5 > (21)

(see Fig 2)
At temperatures below T, both the excitation localization and the speed of 1ts
propagation change with T At temperatures close to Ty which 1s determined by

3 /a2p\'°
T, =T, - ag (Tﬂ> ) (22)

the localized state 1s destroyed
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Figure 2. Excitation propagation p = p(z,t) (a soliton) along a quasi-1D structure n
Lipid bilayer at different temperatures a T =057,, b—T = 0847, Other parameters

and variables are r =zx/a t=MN1t,a=05nm Q) = 1012 57 v =25 1072 cn?/s

Lateral charge and transport of small molecules by solitons along the
quasi-1D structures in membranes

Soliton-like excitations (21) are local displacements of the LHs from the state of
equilibrium and local conformation changes i the LT-subsystem Both perturba-
tions are generated n, and move together along, the quasi-1D membrane stiuctures
under proper conditions Electrons, 1ons or other hgands interacting with the lipid
molecules acquire additional energy (defoimation potential)

W1 — Vi) = —20pei (z — Vi) = —%Am—)sech? (x 2AVt> . (23)
where ¢ 1s the paiameter characterizing interaction between the hgand and the
deformation of the lipid chain This energy may provide trapping of small par-
ticles and their tiansfer along with the soliton The possibility of such a phe-
nomenon has been mvestigated by Zmuidzinas (1978), Davydov (1984), Kadantsev
and Lupichev (1990) The movement of a particle trapped by the soliton 1s described
by Schroedinger equation solution to which for the energy well (23) corresponding
to the soliton (21) has been obtamned by Landau and Lafshits (Landau and Lafshits
1963) They demonstrated that the energy spectrum of a microparticle 1n such an
energy well 1s negative, 1 e the suiplus particle trapped by the sohton in the lipid
chain may only have finite number of energy levels, the lowest of them being

hzn%
AMrA’
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where M7 is the trapped particle effective mass, which depends on the temperature
of the LH-chain, and nq is defined by:

1 160 x Al — 1) Mr
==-(.1 -1].
g 3 <\/ + h2ng 1

Particles trapping and transport by the soliton is only possible when |Eqg| >
kT, where kg is the Boltzmann constant. Thus, the trapping and hauling by
solitons in quasi-1D lipid structures of small particles may provide for the lateral
transport in cell membranes. The problem of feasibility of the necessary conditions
to be investigated separately.

Discussion

This paper is dedicated to theoretical investigation of the cooperative dynamics
of quasi-1D lateral structures in multicomponent lipid membranes. The membrane
bilayer is represented as consisting of two subsystems, those of lipid tails (LT) and
of lipid heads (LH). It was taken into account that the LT-subsystem behavior
strongly depends on temperature, and melting of lipids is observed near some criti-
cal temperature T... The phenomenological Ginsburg-Landau approach widely used
to treat critical phenomena in various systems was also used to tackle this problem.

It was shown that, when the two major subsystems interact with each other
and with the environment, then in quasi-1D lipid structures of bilayers there may
exist excitations of the solitary wave type (with not small magnitudes) moving at
constant speed.

For such excitations to exist it is crucial that interactions between lipid mo-
lecules comprising the quasi-1D structure be much stronger than interactions with
other lipid molecules (“transversal” interactions). Introduction of “transversal” in-
teractions into a computer model of the system results in the excitation “hanging”
at the beginning of the chain or becoming quickly disintegrat.

Propagation of a stable soliton-like excitation in the LT-subsystem (a kink)
induces a soliton in the LH-subsystem which moves coherently with the kink in
the LT-subsystem. The soliton’s speed and the degree of its localization both in-
crease with the increasing temperature but in the presence of even a slight noise
at some temperatures close to the melting point, the localized state decays. Local
conformation changes in quasi-1D lateral lipid structures of the LH system can
provide for additional energy in the interaction of small ligands, both charged and
neutral, with the membrane. This may result in the ligand becoming trapped by
the soliton with subsequent movement of both of them as a whole. Thus, quasi-
1D lipid structures in the membrane may provide for lateral transport of matter
and for conformation changes sufficient for sustained long-distance intramembrane
interactions.
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To a large extent, the effectivity of this transport depends on the degree of
the excitation locahization and on the velocity of propagation, both of which n
turn depend on temperature The high sensitivity of the lateral transport to tem-
perature, changes 1n hipid composition of the membrane, and to other conditions
requires further investigation

The desciibed mechanisms in our opimon may be a basis for highly cooperative
changes 1 large areas of the membrane in response to local internal or external
stimuli The developed approach may piove useful in modeling of phenomena such
as synchronous changes of membrane bound enzymes or 10n channels
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