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Abstrac t . A computer simulation for a frozen region expansion around a cryo­

probe in liver tissue is presented and compared with experimental measurements 

in liver tissue. Both the analytical solution under simplifying assumptions and 

the numerical solution of the heat equation were tested. No analytical solution 

is possible when studying the freezing process in the t ime scope of minutes. The 

problem is that the solution needs spherical coordinate transformation, which is 

singular in the origin. For the frozen region, the analytical solution is not con­

strained, and conclusions are unrealistic. Neither does it account for the cryoprobe 

diameter. The numeric solution to the same problem is much more informative. 

It adopts the natural boundary conditions that are the constant temperatures of 

both the cooling medium and the bath. Comparisons between the numerical so­

lution and experimental measurements show good approximation of the problem 

by the model of tempera ture distribution in a homogeneous medium which freezes 

around a cryoprobe. Differences were smaller than the apparent measurement er­

rors. Our approach allows relevant results to be obtained within the t ime period 

available during the surgery. 
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In troduct ion 

Cryosurgery has been successfully applied for treating primary and metastatic can­
cer of the liver. Often, this procedure is the only option when tumors are unre­
sectable. Patients with primary hepatocellular cancer face low resectability rates 
^Rubinsky and Onik 1991). Cryosurgery uses cryoprobes inserted into the tumor. 
Freezing is initiated by liquid nitrogen circulating through the probe wnich causes 
the tissue around the probe to freeze. If cooling rates are high, the tumor cells are 
irreversibly damaged below a certain temperature. 

To achieve opt imum results, the placement of < ryoprobes with respect to the 



4 Poledna and Berger 

neoplastic tissue is critical. This concerns the duration of the t reatment , minimum 

damage to the healthy tissue, and maximum probability to destroy the cancerous 

tissue. The extent to which a region of frozen tissue can be monitored accurately 

during surgery is limited, and fundamental understanding of the mechanisms of 

damage caused by cryosurgery is still lacking (Bischof et al. 1993). We have tried 

to model the freezing process by the heat equation to obtain reliable estimates 

for t reatment effects at defined placements of the cryoprobe. This problem has 

also been partially analyzed by Weill et al. (1993). We used polar coordinates to 

minimize computation time. 

Our aim was to provide fast and reliable estimates of the freezing effects for a 

defined placement of the cryoprobe. This task is difficult due to the restricted resolu­

tion power of ultrasound imaging for detecting tumor extension and monitoring ice-

ball formation. Because the treatment t ime usually exceeds ten minutes, this longer 

t ime range is important for assessing the tolerance on the position of isotherms. 

Wi th our approach and program, the t ime required to calculate isotherms is within 

the scope available during the surgery. 

M a t e r i a l s and M e t h o d s 

Beef or pig livers were immersed in a bath of 37°C. After temperature equilibra­

tion, 1- 3 cryoprobes were placed into the liver tissue. Several (8-12) thermocouples 

were inserted in the liver tissue between the probes and also outside the probes 

in equidistant positions. During 15-20 minutes of maximum cooling, temperature 

da ta were sampled from each thermocouple at 1 minute intervals. Results from 

experiments with perfused livers of living pigs and non-perfused livers were com­

pared. The temperature data obtained during the second freezing phase in perfused 

liver were almost identical with the da ta obtained in isolated, non-perfused livers. 

Mathematical Description of the Problem 

To obtain a comprehensive model, several simplifying assumptions are required. 

The effective part of the cryoprobe is considered as a sphere, and the origin of a 

spherical coordinate system is placed at the center of this sphere. The tissue is 

t reated as a homogeneous medium, initially at a uniform temperature . The cry­

oprobe cools the surrounding tissue, which results in two phases within the medium, 

a frozen region and an unfrozen region separated by an interface termed the freez­

ing front. The thermal properties of the frozen and unfrozen regions are assumed 

to be constant within each phase but different between the phases. 

The Fourier law states that the heat flow through a body, </, per unit time is 

proportional to the area of the body, A, through which the heat is flowing, and to 

the temperature difference between any two points in the direction of the heat flow 
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(Xi — J2), and is inversely proportional to the distance between these points, /, 

q = k-A-(T1-T2)/l 

or 

q = ~ d7 ( ) 

where k [ \V.m _ 1 .K - 1 ] is thermal conductivity. 

The Fourier transient conduction equation is 

«•?? = ? m 
ox1 at 

where 

a=— (3) 
p-c 

and c is the specific heat at constant pressure (Bald 1987). 

For a point heat sink, the temperature distribution is described by the heat 

equation in spheiical coordinates in each phase 

02T 2 (0T\ 1 (0T\ 

The uniform initial temperature condition is 

T,{r.t) = T,\ 0 < r < o o , t = 0. (5) 

Due to the phase change occurring during the freezing process, interface conditions 

at the freezing front are also required. Temperature continuity at the interface 

requires that 

T^rJ) = Tl{r,t) = TM; r = s(t), t>0 (6) 

and from the conservation of energy at the interface 

^•W-k'-^ = p-L"ár:r = s{t)-t>0 (7) 

where s(r), the freezing front, is the location of the interface separating the frozen 

from unfrozen regions. Indices s and I correspond to the solid and liquid phases 

respectively. 

The boundary condition maintains the initial temperature at infinity 

T,(cx,t) = Tl: r > 0 . (8) 
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Table 1. 

a , 

a-i 

4.5 x 10"7 

3 

mV 1 

1 

the thermal diffusivity 
of the frozen tissue 

the ratio of thermal diffusivities 
in hozen and unfrozen tissue 

Lu 

P 
c 

.33.3.6 x 103 

1.0 x 103 

3000 

J .kg-1 

kg.m 3 

J .kg -^K" 1 

latent heat of water 
specific mass of the tissue 
specific heat at constant pressure 

The essential parameters of the model are in Table 1. These parameters were se­

lected from Bald (1987) and Duck (1990). 

The obvious idea is to use the analytical solution of the heat equation, but a 

solution has only been found for special arrangements. The pioblem described by 

equations [4-8] can be solved analytically (Carslaw and Jaeger 1959; Crank 1964); 

however, properties of the heat sink need additional assumptions. In particular the 

heat sink is a point, and 

lim Í4TTrH\ • ^ ) =2-Q-(ns-t)$ 
j—o y dr J 

where Q is a constant associated with the point heat sink. To simplify expressions, 

dimensionless variables are used. The dimensionless tempera ture variables are 

TM - T, TM - T, 

and the dimensionless heat sink coefficient is 

Q* = 
2n-ka(TM-T,) 

Then, the solution for the frozen region is 

es(„j = i - < r ' ' e x p ( - ' ' 2 ) e x p ^ A 2 ) 

2/? 2A 2- (e r fc ( / / ) -e i fc (A)) 

and foi the unfrozen region, the temperature profile is 

e x p ( - n 2 - o , , ) TXLI 
I 1 

2// -n I 2 erfc(?/-a;,) 
e,in) = - ——i— 1 . 

exp( —A • o s / ) x ' 

2 A - a 2 , 2-erfcfA-a 3 , ) 
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where the dimensionless variable 7; is chosen to be 

r 
1 = r, 

2 - ( a . i ) * 

and the location of the freezing front, s(t), as a dimensionless variable is 

A = s(t) 

2-(<*sr)4" 

However, the analytical solution does not consider the actual properties of the 
cryoprobe. Actually, the dimension of the cryoprobe cannot be neglected. For the 
cryoprobe with a diameter a, the additional boundary condition is 

T,(a,t) = Tz, r > 0 , (9) 

which says that the boundary is kept at the temperature of the cooling medium, e.g. 
liquid nitrogen. Therefore, the numerical solution is a choice. The implicit method 
according to Twitzell (1984) was used. 

The parabolic partial differential equation [4-9] is solved on the finite spatial 
interval 0 < a < r < R, and the boundary condition [8] changes to 

T,(R,t) = Tn t>0. (10) 

For computation, the dimensionless temperatiue variables are used. The spa­
tial interval (Q,R) is divided into N + 1 subintervals each of width h, so that 
(N + 1) • h = R, and the independent variable t is discretized in steps of length 
/. The legion for which the heat equation is solved was covered by a rectangular 
mesh, the mesh points having coordinates (mh, nl), where m = 0 , 1 , . . . , N + 1 
and n = 0.1, 2, . . . The space and time partial derivatives are approximated by the 
differences 

dT 
dr 

d2T 
dr2 

dT 
~9t 

The solution, T(m • h,n • I), of an approximating difference scheme is denoted by 
U"v With respect to [10], U^+1 = 0, and the system of linear equations in the solid 

T(r + h,t)-T(r,t) O(h) 

T(r - ft, ŕ) - 2T(r, t) + T{r + h, t) 
ft2 0(ť 
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phase has the form 

(1 + 2Ps) • U:+1 - P s • ̂  • U^ = Un
c + p. n+l „ c + * . rr« + l _ Tjn , ^ 

+ 1 — ^c +Ps 2 

p s • ̂  • i /^ t 1 + (1 + 2ps) • U^+' - Ps • ̂ 1 • U»+\ = U?n,c<m<f 

/-^(^.^.f^u.,^ 
= U^+Pa-^-j 

(/ + 1) h 
U, M (s„ - f h) 

where p., — as • l/h2, c • h = a, the cryoprobe radius, and the radius of the frozen 
region, s„. In the liquid phase pi = on • l/h2, and 

{i+{2-(f + iKsn-(f + i)h))-p<)-U^-pi-JTi-u^-

= U?+1 + Pl'WTY)-(f + i)h-Sn-
UM 

- m • (-^ • u»+\ + d + 2Pl) • t c + 1 - w • * ^ • Effi = tC, 
/ + 1 < m < N 

N — 9 

- p' • Y^Í ' ̂ - i + ( i + 2 P ' y u N + 1 = UN 
The position of the front between the frozen and unfrozen regions, s„, is de­

termined from the equation [7] 
s«+l = sn + í'íi ' < 

i / uM-m+1 uM-m+l \ 
v„+i = • Us J-j-, k,- J^ ' p - L y s „ + 1 - / f t s„+i - ( / + i ) f ty 

To test whether cells are killed, it is important to calculate the cooling rate in 
the proximity of the front. 

n + l dT _ U M - U]Zi 
t\i+i • 

dt " + 1
 a , 1 + i - ( / + l)ft 

The computed solution of this scheme is obtained for each time step by using 
the decomposition of the tridiagonal matrix of the linear system and by applying 
the Doolittle method (Twitzell 1984). 
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R e s u l t s 

The distribution of temperature around the cryoprobe during cryosurgery is a very 

important characteristic for determining the extent of tissue destruction A decrease 

of temperature below — 50 °C is considered satisfactory for killing a cell However, 

an additional condition should be fulfilled For cell killing, the actual freezing rate 

must hold above a minimum freezing rate which is a few centigrades per minute 

a. 
E 
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n oo 

i i i i 

0 ^ — 

^s^ 

200 400 600 

Time [s] 

800 

Figure 1. The analytical solution of the heat equation (upper panel) was determined 
according to Scott and Scott (personal communication) (1992) It can be seen that tem­
perature m the frozen region is lower than — 200 °C Moreover, the heat gradient is un-
reahstically high what influences the movement of the freezing front Parameters of the 
tissue are according to Duck (1990), and are listed m Table 1 It is supposed that the 
tissue freezes at 0°C Temperature distribution is plotted at 0, 300, 600, and 900 s In the 
lower panel, movements of 0 °C isotherms are shown 
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Figure 2. The numerical solution of the heat equation (upper panel) shows the temper­
ature distribution in the liver tissue around a ball-shaped cryoprobe with the radius of 
2 5 mm and temperature of —200CC Compare with Fig 1, where the same tissue heat 
parameters are used In the lower panel, movements of 0°C and — 50 °C isotherms are 
shown 

Therefore, we tried to determine the radius of the frozen tissue and the radius of 

the region with temperature below — 50 °C 

Primarily, we tested the applicability of the analytical solution of the partial 

differential equation for heat [4-8], and this solution was compared with the nu­

merical solution on a finite spatial interval The spatial region was chosen large 

enough to exclude effects of the boundary 
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Figure 3. The effect of increasing thermal conductivity and diffusivity in both solid and 
liquid phases is shown. All the parameters were multiplied by 2. When compared with 
Fig. 2, the effect meets expectations. The temperature decreases faster than in Fig. 2. 

For the frozen region, the analytical solution (Fig. 1) is not constrained, and 

conclusions about the temperature distribution in the frozen tissue are unrealistic. 

Therefore, it cannot be used to est imate the freezing effects, especially for long 

cooling periods. Also, the analytical solution does not account for the cryoprobe 

diameter, which is an important characteristic for the cryosurgery procedure. 

The drawback of the problem formulation is the incorrect assumption of a 

specific tempera ture of tissue solidification. Due to the presence of intracellular 

and extracellular compartments with different ionic composition and movement 
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of water between these compartments during freezing, ice crystals form within a 

temperature range ra ther than at a specific temperature value. However, for test 

computations (Fig. 2), we chose the freezing point at 0°C. Due to the empirical 

knowledge that lowering temperature down to about — 50 °C kills the cell, we also 

drew the position of the — 50 °C isotherm. 

For further applications of the model, we tested the sensitivities of the in­

dividual thermal parameters . It appeared that the solution of the model is the 

most sensitive to thermal diffusivity, a, and to tempera ture of the freezing point, 

TM- For other parameters , changes amounting to multiples of experimentally mea­

sured values did not change the solution substantially. The effect of doubling the 

diffusivity parameter is shown in Fig. 3. These conclusions allowed to restrict the 

number of adjustable parameters of the model to an approximation of experimental 

measurements. 

We tried to approximate experimental data by the model of temperature dis­

tr ibution in the liver tissue. The essential parameters of the model were selected 

from published data . The best fit of the system of tempera ture measurements is 

presented in Fig. 4 with the parameters listed below. Temperature measurements 

were performed at points 5; 8; 10; 12; 15; 17: and 20 mm from the cryoprobe surface. 

For distances 5 and 15 mm, there were thermocouples placed symmetrically to the 

cryoprobe, and two values were obtained for each distance. The probe diameter was 

10 mm. Experimental measurements are represented by the solid curves. A prelim­

inary check of the individual parameters showed that the solution of the thermal 

conductivity equation is mainly sensitive to two parameters , thermal diffusivity, 

a , and temperature of the melting point, TM- Their effects are the following. The 

thermal diffusivity influences proportionally the rate of tissue cooling. Its influence 

is demonstrated by the dotted curve corresponding to a s = 4.0 x 10~' m 2 s _ 1 , and 

the dashed curve corresponding to a, = 4.2 x 10~' m 2 s _ 1 . The first one gives a 

bet ter fit. The value is about 20% lower than reported in li terature ( a , = 4.5 x 10~' 

m 2 s " 1 ) . The freezing temperature , TM, mainly influences the temperature distri­

bution in the frozen region. The best fit was at TM = — 12°C. This is a reasonable 

value, because no distinct temperature point for tissue solidification exists. This 

process takes place between zero degree and the eutectic point (about — 21 °C). 

The approximation of the experimental curves (Fig. 4) by the model is very 

good compared with the difference of the experimental measurements in points 

placed symmetrically with respect to the cryoprobe. 

After the first freezing, the tissue was heated slowly to the initial temperature , 

and then the freezing procedure was repeated. We expected some changes to occur 

in temperature parameters when the tissue was frozen for the second time. However, 

the differences were negligible, and can be explained by changes in the thermocouple 

positions due to tissue volume changes. 
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Figure 4. Temperature measurements were performed at points 5; 8; 10; 12; 15; 17; and 
20 mm from the cryoprobe surface. From bottom to top, the curves represent increasing 
distances from the probe surface. The probe radius was 5 mm. The upper panel represents 
the first freezing beginning from 31.2 °C and lasting 15 minutes. The tissue was left to thaw, 
it was then heated to 33.7°C, and the procedure was repeated (lower panel). Experimental 
measurements are represented by the solid curves. The model data were computed with 
parameters TM = - 12 °C, as = 4.0 x 10~7 m 2 s _ 1 (dotted line), or as = 4.2 x 10~7 m 2 s _ 1 

(dashed line), and the other parameters are listed in Table 1. 

D i s c u s s i o n 

For the presented computations, data from literature were used, which took into 

account the different thermal properties of the frozen and unfrozen tissue. There-
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fore, the simulations can be expected to be realistic. However, the data used were 

obtained under various experimental conditions, and they might not be fully consis­

tent . Direct comparisons of experimental measurements with numerical simulations 

can be the only test. Such a test based on da ta from the liver tissue has shown tha t 

with the exception of thermal diffusivity, a , other thermal parameters are applica­

ble. The solution is most sensitive just for a and TM- The best value determined 

by approximation of experimental data was as — 4.0 x 10~7 m 2 s~ 1 , which was 

about 10 percent lower than the value listed in Table 1. Due to a low sensitivity 

to the other parameters , the temperature dependence of L has not been taken into 

account. 

The physical events that occur when individual cells are cooled and eventually 

freeze have been described by Mazur (1984). As cooling occurs down to about —5°C, 

the cells and their surrounding medium remain unfrozen because of supercooling. 

In the interval between approx. —5 and —15 °C, ice crystals form in the external 

medium either homogeneously or heterogeneously, depending on whether or not 

any seeding takes place. During this period the inside of the cell remains unfrozen 

and supercooled because presumably the plasma membrane prevents ice crystals 

growing into the cell interior. 

The normal freezing point of water at the atmospheric pressure is 0°C. The 

freezing point is significantly influenced, however, if solutes are added to water. 

During the freezing of a binary mixture the phase change occurs over a finite 

temperature range. Normally, for slow equilibrium freezing, the concentration of 

solutes would increase before complete freezing of the mixture at the eutectic point 

(about — 21 °C). Therefore, TM — —12°C, as determined by the best approximation, 

is a reasonable value. 

The common observation is tha t ice appears in the extracellular medium before 

it appears inside the cells; and the cells themselves remain unfrozen at temperatures 

as low as —5 to —15°C, even in the presence of extracellular ice. 

Temperatures between —5 and — 50°C are the most critical. Within that range, 

the immediate lethality of freezing usually increases with the decreasing temper­

ature . Temperatures below approx. — 50 °C usually have no further killing effect 

(assuming that the cooling velocity remains constant) (Mazur 1963; Mazur 1984). 

Since cooling and warming rates and final temperatures influence cell injury 

profoundly, it is impor tant to know the distribution of temperatures and rates in 

tha t portion of the tissue that does freeze. 

As far as the shape of the "iceball", is concerned, model assumptions are sim­

plified in this case. The cryoprobe is not a sphere; rather, it is a rod with a spherical 

t ip. Therefore, the assumption of point symmetry is only an approximation. We 

chose the spherical coordinate system and radial symmetry. When the cryoprobe 

is not very long, this system describes the experimental situation well. In the op­

posite case, the ice ball is pear shaped, and cylindrical coordinates are a bet ter 
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choice. This situation can be further improved by using a model with more spatial 

variables. 
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