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Abstract. Neurons need two basic properties to carry out their functions. The 
first is their ability to transduce the changes of the dendritic potential and to sum 
them in spatial and temporal dimensions. The second is their ability to elicit an 
action potential which can be transmitted along the axon at a long distance. This 
simulation study demonstrates how these two properties can be retracted to the 
two points of the neuron model. First we discussed the definition and general 
properties of the so-called two-point or spiking neuron model. Then a simple 
simulated solution of the first passage time problem of the birth and death process 
applied in this model was discussed. In case of olfactory cells, the model exhibited 
a behaviour similar to the experimental data with parameter values corresponding 
to the suprathreshold concentrations of an odorant. 
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Introduction 

In recent studies the attention has been focused on questions concerning the func
tion of a single neuron. The family of known ion channels grows more and more 
branched. There is a large number of toxins available for blocking these channels 
(Witkovsky 1989). Changes of the electric potential at neuronal membranes are 
described by classical Hodgkin and Huxley partial differential equations (Tuckwell 
1988b). This system of equations does not yield too different solutions when a 
greater number of ion channels and their biophysical properties are introduced. 
More exact data on the ultrastructural organization of neurons are now available. 
The direct data input from picture processing and picture analysis systems gives a 
more solid background for estimating the single neuron function. Computational 
reasons lead to simplifications of rigorous deterministic descriptions of the func
tion of the membrane. According to Tuckwell, " a stochastic version of nonlinear 
systems of equations such as those of Hodgkin and Huxley is a mathematically 
formidable task" (Tuckwell 1988b). Instead of these the Nagumo simplifications or 
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cable equations are used (Tuckwell 1988a). When collecting numerical data from 
these equations, we must confront them with the functional point of view. In this 
study we have focused on events performed in fractions of milliseconds. From this 
standpoint the function of both peripheral and central neurons is to transmit some 
signal encoded in a pulse code for a distance and then to distribute it to specific 
targets. 

This study describes the two-point model originally introduced by Kohn (1989). 
It is based on the conception that the main function of the neuron is to generate 
pulses. The complexity of this model stands somewhere between a model with 
a more exact description of the membrane electricity on one hand, e.g. that of 
Hodgkin and Huxley and its modifications (Tuckwell 1988a; Av-Ron et al. 1993), 
and the leaky integrator (Tuckwell 1988a) on the other. One of the computational 
difficulties this model yields is that no analytical solution is known for the so-
called first passage problem, i.e. the problem of estimating the time of crossing the 
threshold for a given random process. The non-existence of an analytical solution 
is not unusual in the stochastic approach and it is solved here by simulation and 
numerical computation. In stochastic models there is sometimes a gap between 
the state variables of these models and measurable biophysical values. The part of 
this study below equation (2) is an attempt to fill this gap. In this study the basic 
properties of this model are shown and then this model is applied to the description 
of the olfactory receptor cell. 

The olfactory receptor cell is chosen here for its relative functional simplicity. 
In contrast to the rest of sensory pathways, the receptor cell is itself a neuron 
with a regular axon. Olfactory cells in vertebrates are contained in the olfactory 
epithelium. These cells have two ends: epithelial and axonal. The epithelial end 
of the cell has its surface enlarged by cilia. The odorant molecules are inhaled and 
passed through respiratory airways and bound to the olfactory cilia at the olfactory 
mucosa. This bond gives rise to the dendritic generator potential. (The generator 
potential can be recorded from electrodes.) The axonal end of the olfactory cell 
continues in the nonmyelinated fibre, the axon, ending at the next olfactory path
way relay, the olfactory bulb (Altner 1977). The changes of the dendritic potential 
propagate along the cell soma and increase the potential at the axon cone. When 
the potential at the axonal cone reaches the threshold value, it causes a neuronal 
firing propagating along the axon. The membrane of olfactory cilia contains pro
tein receptors binding aromatic substances. In one olfactory cell several types of 
protein receptors are assumed. The olfactory cell responds to different odorants. 
The sensation of a particular odour arises from the activity of the mosaic of la
belled lines of olfactory axons, each responding to several odorants (Altner 1977; 
Witkovsky 1989). 

The starting point in the derivation of Hodgkin and Huxley equations is the 
description of ionic currents at a given membrane capacitance and different ionic 
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conductances: 

C ^ T 1 = 9(V(x,t),t) (1) 

where C is the membrane capacitance, V(x, t) is the membrane electric potential 
at a distance x and time t, and g is a net conductance as a function of the po
tential V(x,t) and time t (Tuckwell 1988b). This model was originally identified 
with the results of measurements of the action potential at the axon of neurons 
of the giant squid. This model explains the uniformity of separate spikes of the 
membrane potential. Our discussion of the model presented in this paper will treat 
the membrane potential phenomenologically. (In conformity with the biophysical 
point of view, we can say that the membrane potential is a capacitor potential, 
discharged and charged by ionic flows, and represented in equation (1) as C). 

Two-point model 

In the two-point model the neuron is represented by two points or two compart
ments (Lanský and Rospars 1993; Kohn 1989). Let us denote the dendritic point 
by A and the dendritic potential by Y(t), the axonal point by B and the potential 
by Z{t), respectively. We will call {Y(t),t > 0}, {Z(t),t > 0} processes, i.e. time-
dependent functions (Tuckwell 1988b). The model can be treated as a special case 
of Hodgkin and Huxley equations in the following sense: instead of the continuum 
of values of the distance x along the axon we will substitute for x the points A and 
B so as to write Y(t) = V(A, t) and Z(t) = V(B, t). (This will change considerably 
the boundary conditions for these equations.) The potential Y(t) represents the 
idealized collection of inputs to the cell. In our simulation example the dendritic 
potential Y(t) is the generator potential and we will model it as a random process 
associated with the process of occupying protein receptors on the olfactory cell. 

A striking feature of a neural cell activity is the limit frequency of spikes. 
The limitation of the frequency bandpass is besides other bounds given by the 
refractoriness of the axon to excitation immediately after the spike. The axonal 
refractory period in this model is reproduced by resetting the potential Z to the 
hyperpolarization (or, more precisely, afterhyperpolarization) level. The dendritic 
potential is left at its own level. The effect of afterhyperpolarization in this model 
is reproduced by an exponential return of the potential Z from the hyperpolariza
tion values to the values of Y with the time constant r. (This constant roughly 
corresponds to the time constant in the passive membrane model.) 

Let us denote the firing threshold as S. When the potential Z(t) crosses the 
threshold S, it elicits a unit event, an action potential. Then the function Z(t) is 
reset to the value YH, which is a constant value corresponding to the membrane 
after hyperpolarization level. Therefore the function Z(t) is discontinuous. The 
new passage of the potential Z over the threshold then elicits a new action potential. 
We will denote by YE the maximal excitation dendritic potential and by Y0 the 



344 Maršálek 

resting dendritic potential in order that the threshold S of the point B may lie 
between them, YQ < S < YE- For the exponential return of the potential Z{i) to 
the values of Y(t) the time is counted from the last spike. The potential from the 
hyperpolarized level is set as a function of time from the last spike. 

Z(t) = YH+(l-ew(jk^y)-(Y(t)-YH) (2) 

where t is the simulation time, t^ < t is the last spike time, r is the membrane time 
constant, and Y# is the axonal afterhyperpolarization potential, YH <YQ. Spikes 
occur at moments to, t\,..., when potential Z(t) crosses the threshold S, Z(t) > S. 
The time t^ is the nearest lower time between spikes, ti — tn for t„ < t < í n +i- We 
will define the interspike interval (ISI) as I{n) = tn+\ — tn, the average interspike 
interval as EI = -^ ^ n = o ̂ (n)> a n d the average frequency as E F = -^j . 

There are several possible ways of defining the dendritic potential Y. It can 
be treated as a noise or it can be treated as a result of a superposition of a noise 
and a signal. In this paper we lay stress on the potential ľ a s a random input. 

As an example of such elementary input process we may use the Wiener process 
(or Brownian motion) defined as follows: {W(t),t > 0} is a standard Wiener 
process if: 
(i) W(0) = 0, 
(ii) given any 0 < ro < t\ < t^ < • • • < i n - i < tn, the random variables W{tk) — 
W(tk-i), k = 1, 2, . . . , n are independent, 
(iii) for any 0 < t\ < t2, X = Wfa) — W{t\) is a normal random variable with a 
zero mean and variance Í2 —1\ (or this will be denoted x G ÍV(0, Í2 ~ M ) (Tuckwell 
1988b). 

The Wiener process itself is not sufficient for modelling the membrane poten
tial, because it has no bounds. In introducing bounds for this potential, let us 
denote them by WH < WD (as hyperpolarization and depolarization). When we 
add into the above-mentioned conditions 
(iv) WH < W{t) < WD, 
we shall obtain the Wiener process with a reflecting barrier (Holden 1976) where the 
probability distribution function of X = Wfo) — W(t-[) must be multiplied with the 
appropriate constant. Another difficulty is that for the values of the time interval 
At = tk+i—tk the change of W ( AW = W{tk+\) — W(tk)) is equal to the standard 
deviation, AW — VAt, and as At —> 0, the velocity ^- —• oo and the trajectory 
becomes discontinuous. This difficulty is usually solved by the introduction of 
a diffusion process with a more complicated definition than the Wiener process 
(Lanský and Rospars 1993). The non-existence of an analytical solution of the first 
passage problem for a given random process was commented in the introduction. 
In the numerical simulation it is sufficient to consider a discrete version of the 
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Wiener process, the discrete random walk, (Holden 1976). We attempt to avoid 
too complex computation. 

Our definition of the dendritic potential Y presented here is based on the 
model with the Poissonian excitation and Poissonian inhibition as discussed by 
Tuckwell (1988b). Instead of the continuous set of real numbers, the values of y are 
estimated by a finite number of values in process {I(t), t > 0}, I(t) G {1, 2, . . . , n} . 
Let us denote the probability of incrementing I(t) during the time t G (to, to + At) 
Pi (for an arbitrary to and a given time step At), the probability of preservation of 
the value of I(t) during this time interval P2 and the probability of decrementing 

Pl=\(n-I)At ( J - > I + 1 ) 

p3 = pi At (I^I-l) (3) 

P2 = l-(P1+P3) (I -> I) 

The process I(t) is called the birth and death process with the intensity of 
birth A, and the intensity of death p (Holden 1976). The assumption that the 
probabilities pi, P2, and p% are < 1 can be satisfied by setting At sufficiently small 
and keeping A and p constant with respect to n. The probability of the just one 
arrival of the birth event during the time í G (to, to + At) is AAč exp (—AAč), which 
has the Taylor series J2Zo AAí(-AAŕ) !/i! = AAť- A2Ať2/l! + A3Ať3/2!.... Terms 
with the higher order of Ai are unsubstantial for Ai small enough, AAť exp (—A Ac) 
can be replaced by AAť. The birth event can occur (n — i)times and so p\ — 
\(n — i)At. And then for At —> 0 we can write p\, p2 and p^ as in equation (3). 
When we use diminishing time-slices Ai, p2 gets greater in respect to p\ and p%. 

When simulating the process I(t) we can use numerical solutions of the sys
tem of stochastic differential equations for I'(t): I'(t) = j ^ - + i/nU(t) and 

dU(t) = -(A + p)U(t)dt + J]^dW(t), where W(t) is the Wiener process, U(t) 
is constructed from W(t) for the sake of differentiability, (Č7(ŕ) is the Ornstein-
Uhlenbeck process), and finally I'(t) approximates I(t) (Kohn 1989; Lanský and 
Rospars 1994). In our simulation we use a method simpler than numerical solution 
of these equations. We simulate I(t) by using probabilities p\, p2, P3 from equation 
(3) and compare them with the output of a random number generator with uniform 
distribution. 

The dendritic potential is set proportional to I(t) and belonging to the range 
Y0<Y< YE. 

Y(t)^(YE-Yo)I-^-+Y0 (4) 
n 
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Characteristic of the process Y 

Starting from the resting-point 1 (̂0) = Yo, the mean and the variance (for ť —• oo) 
of this process will be 

E(Y(t)) = (YE-Y0)-^-+Y0 (5) 
A + p 

Var(F(ť)) - (YE - Y0)
2 ^ X

 2 (6) 
n(X + p) 

When the mean potential is greater than the threshold S, it leads to neuron firing. 
When the passage of the process Y(t) over the threshold (i.e. events Y(t) > S) is 
rare, or, say, when the passage occurrence tends to be the Poissonian point process, 
the whole cell firing will be Poissonian. 

In has been pointed out that both dendritic potential and spike activity are 
Poissonian, if the distance of the threshold from the mean dendritic potential (nor
malized by its standard deviation) is greater than or equal to 3 (Lanský and Rospars 
1993). 

S-E(Y) 

yvärTT) 
> 3 (7) 

Following (4) and considering that the level of S is exceeded by reaching I(t) > j , 
0 < j < n, we can substitute here for S = ^(YE — Yo) + YQ. Then for the mean 
and variance from (5) and (6), (7) becomes 

VňK(A + /i)-A 

pX 
> 3 

and, noting that \ — > 0: 
V n 

-(X + (i)-\>3j— (8) 
n V n 

As the variance (5) and the mean in (6) depend on the p/X ratio only, we can 
discuss the inequality (8) after the substitution p = kX and divided by A > 0. 

í k A2 

U\ + k\)-\>3\ 
V n ( 9 ) 

- ( l + fc)-l>3W-
n V n 
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The note after equation (7) can be illustrated by setting j = f, which gives (fc—1) > 

y TÍ ' 

y/k(Vk-6/y/ň)>l (10) 

This inequality for fc with respect to the parameter n has then the following solu
tion: When n is large enough (say n > 144), then k has to be fc > 1.7 and this gives 
a relatively wide range for the ratio of input intensities, where the activity of the 
model neuron is Poissonian. At the other extreme of the values of the parameter 
n, n < 36, fc has to be fc > 4. This can be interpreted as follows: the less fine scale 
of the dendritic activation, the lesser part of the whole cell activity is Poissonian. 
In the simulation part, the values of A for fc close to these values will be called 
threshold values. 

The process I(t) can be generally interpreted either as excitatory and in
hibitory contributions yielding reversal potentials, or, as in the following example, 
as receptor binding. 

Application of the model to the olfactory cell 

Some state variables in the model defined in preceding parts can be interpreted as 
biophysically measurable values at the olfactory cell. Its function was outlined in 
the introduction. The bond and release of an odorant at the protein receptors cor
responds to the birth and death process 7(ť). From the physiology of the olfactory 
cell it is known that protein receptors are joined with the G-protein whose activa
tion opens the ion channels and raises the potential Y(t). A gross simplification 
in the model is suggested by the assumption that the dependence of Y(t) on I(t) 
is linear. The intensity p corresponds to the constant of releasing the odorant and 
A is the intensity of odorant binding - this variable corresponds to the function of 
the concentration of the odorant. 

The bond between an odorant and the receptors exhibits the Michaelis-Menten 
kinetics as a property of a small amount of receptors (represented here by the 
number n). The original Michaelis-Menten equation describes speed v of an enzyme 
catalyzed reaction as a function of the concentration c of a substrate. 

•'maxC -ry ^max-^-m M 1 \ 
— ' m a x — ~j^ j ( 1 1 ) Km+C Km +C 

where Vmax is the maximal speed of reaction (in other words the speed at the 
saturation of the enzyme system) and Km is the appropriate Michaelis constant. 
Analogously, in most receptors on the cell surface, the identical functional depen
dence for the binding substances is described. A hormonal action can serve as a 
classic example. The cell response r can be expressed by the ratio to its maximal 
physiologically defined response: 

r = Ä m a x - % ^ (12) 
Km + c 
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where i ž m a x is the maximal response, c the concentration of the hormone and Km 

is the appropriate Michaelis constant. For details see e.g. Murray (1990). 
Chemical senses, gustation and olfaction were referred to exhibit the type 

of a response given by this equation (Mountcastle 1974). In case of the model 
olfactory cell, the acting molecules are the molecules of an odorant and the dendritic 
depolarization potential Y change is the physiologically defined reaction. The 
Michaelis-Menten kinetics is derived from the stochastic description of binding 
a small molecule to the protein molecule. The two-point model of a neuron is a 
possible generalization of this approach. 

Simulation experiments and results 

We have simulated this model with constants approximately close to the biological 
ones taking into consideration several points of view. (Implementation note: the 
model was written in the Turbo Pascal language. The source code was compiled 
with The Borland's Turbo Pascal v. 6.0 compiler and ran on a standard PC 80486 
DX/40 MHz under the system MS-DOS v. 6.0. The source code is available at the 
author's e-mail address: MARSALEK@EARN.CVUT.CZ.) We used a Monte Carlo 
technique, i.e. as an input for incrementing and decrementing I(t) we used calls to 
the pseudo-random number generator which is built in Turbo Pascal's System unit. 
This call returns number from range [0,1) with the uniform distribution falling into 
one of three intervals [0,pt), [p,, Pd) and [p,;, 1), where p% = p\ and pa = p\ + p 3 

for pi, p3 from equation (3). According to this case the appropriate transition of 
process I(t) is chosen. All statistical tests are applied to data recorded from the 
moment when the model reached a steady state, i.e. the processes Y and Z stayed 
stationary. 

For the constants of the model we substituted the following values see Table 1.: 

Table 1. Parameter values of the model neuron 

Parameter 

Y„ 
Yo 
S 
YE 
T 

V 
n 

Maximal hyperpolarization potential 
Resting potential 
Threshold potential 
Maximal dendritic excitation potential 
Time constant 
Inhibition intensity 
Dendritic potential scale 

Value 

-80 mV 
-70 mV 
-50 mV 
-30 mV 

4 ms 
0.0003 m s - 1 

100 

Because the process I(t) (or Y(t), respectively) depends only on the X/p ratio 
and the time step is always Ať < 0.25 ms, we can set a fixed constant p = 

mailto:MARSALEK@EARN.CVUT.CZ
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0.0003 m s " 1 . The value n = 100 is the range of interest given by discussion of 
the inequality (10). For A < 0.039 the note under equation (3) saying that p l 5 

P2 and p 3 are probabilities is fulfilled. However, the largest A of our interest is 
A — 0.02. For A close to JJL (0.0003) is spiking very rare (E ISI is greater than 
1 s), we will call these values of A threshold values. We therefore started our 
investigation at the value A = 0.001. Not surprisingly, the firing frequency (EF) 
exhibited a sigmoid dependence on log A. This curve can be compared with the 
steady frequency response of the olfactory cell to different concentrations of the 
odorant. For Ať = 0.08 and in the above described range A G (0.0001,0.02) we 
obtained dependence shown in Fig. 1. 

Figure 1. Simulated mean spiking frequency EF as a function of log A. Ranges: EF G 
(0,300) [Hz], A G (0.0001,0.02) [ms'1]. Model parameters used are in Table 1. 

In Table 2 we have chosen points F l , F2, F3, F4 from Fig. 1 and their corre
sponding values of the descriptive statistics of processes Y(t) and I(t). Fig. 1 and 
Table 2 were obtained by running 1000 spikes with the appropriate parameters. 
The first section of this table lists for comparison the values obtained after substi
tuting equations (5) and (6). The last column, Var ISI, shows that a high variance 
goes together with the higher values of ISIs, which at some point of A gives the 
coefficient of variation greater than 1. This observation is typical of the Poissonian 
activity in spiking models. 
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Table 2. 

A 

Dendritic potential and spiking frequencies 

Estimates after substitution into the 

Average 
EY 

Y Variance Y 
VarF 

Average F 
E F 

equations (5) 

Average ISI 
MSI 

and (6) 

Variance ISI 
VarlSI 

0.001 
0.00139 
0.00196 
0.02 

-39.23 
-37.10 
-35.31 
-30.59 

2.84 
2.33 
1.84 
0.23 

Ai = 0.25 

EY VarY EF EIS1 VarlSI 

0.001 
0.00139 
0.00196 
0.02 

-49.31 
-45.56 
-42.80 
-32.04 

2.40 
3.33 
1.83 
2.37 

12.82 
106.50 
149.92 
246.79 

78.03 
9.39 
6.67 
4.05 

196009.38 
692.63 

0.35 
0.03 

Ať = 0.08 

EY Vary EF MSI VarlSI 

0.001 
0.00139 
0.00196 
0.02 

-49.23 
-45.83 
-42.33 
-32.00 

2.60 
2.00 
2.82 
2.16 

15.42 
114.42 
156.99 
252.15 

64.86 
8.74 
6.37 
3.97 

137459.63 
29.46 

0.45 
0.03 

Ai = 0.025 

EY Vary EF MSI VarlSI 

0.001 
0.00139 
0.00196 
0.02 

-49.33 
-46.53 
-43.50 
-31.96 

2.84 
3.42 
3.97 
2.51 

14.68 
84.33 

144.69 
255.25 

68.11 
11.86 
6.91 
3.92 

226462.87 
1448.20 

1.51 
0.04 

T h e simulated mean depolarization (EY) is slightly lesser t h a n estimated from 
equation (5). These values, however, agree in different simulation steps. This 
difference may be explained by regarding the magnitude of Ať with respect to the 
note under equation (3), enumerating the residuum of Taylor series as well as by 
considering the presumption of ť —> oo in equation (5). At least, this difference 
does not matter with respect to the accuracy of measuring the dendritic potential. 
T h e variance VarY differs much more in this respect. Theoretically, it is indirectly 
proportional to A. T h e simulated variance reflects rather the effects of simulation. 
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Figure 2. Example of the potential Y trace at low intensity of A (0.001 [ms - 1] ) and 
appropriate low spike rate (< 15 [Hz]). At the left there are two bursts with different 
duration and at the right there is a silent period. Time scale (1 s) is denoted by rectangle 
at the right bottom. Time interval marked by rectangle on the left (pointed out by arrow) 
is enlarged in Fig. 3. x-axis: time t, y-axis: potential Z; model parameters used are in 
Table 1. 

According to Lanský and Rospars (1993), the range of suprathreshold values of A 
can be divided into these sections (as shown in Fig. 1). T h e point F2 in Fig. 1 
splits the model neuron activity into two sections (for A < 0.0015 and A > 0.0015). 
In the first section, the distribution of ISIs is exponential. This corresponds to the 
Poissonian spike activity. In the second section the firing activity is irregular and 
t h e distribution of ISIs can be regarded as the G a m m a distribution. First section 
displays a very apparent bursting described in real olfactory neurons, too. In Fig. 2 
there is an example of a trace of the potential Z with parameters Ať = 0.025, 
A = 0.001. In t h e silent period (right) t h e traces of Y and Z are identical. T h e 
cross of Y over the threshold (marked with dotted line at the potential level equal 
t o -50) is followed by bursts of different durat ion. The sample of the end of a 
burst from Fig. 2 is enlarged in Fig. 3 - the appropriate section is marked by a 
segment (the arrow on the left). In Fig. 3 the trace of the potential Y is marked 
by a thick and t h a t of the potential Z by a, th in curve. In Fig. 4 traces are marked 
in t h e same way as in Fig. 3. Parameters in Fig. 4 are: Ať = 0.08, A = 0.00168. 
Different afterhyperpolarization is here just an artifact caused by sampling, however 
it reflects various onsets of successive spikes as the depolarization of Z catches up 
with y . 
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Figure 3. Enlarged example of the potential } and Z traces at low intensity of A and 
appropriate low spike rate from Fig 2 Time scale (50 ms) is denoted by rectangle at the 
right bottom Trace \ is denoted by thick and trace Z bv thin curve Model parameters 
used are in Table 1 

D i s c u s s i o n 

Wiener (1958) formulated the motivation for the application of stochastic descrip

tion of nature in his classical work 

Computat ions performed by real neurons have remained up to the present t ime 

enigmatic (Witkovsky 1989) There is a general agreement on the biophysics of 

t ransmit t ing spikes along the axon (Tuckwell 1988a) However, no unified theory 

of dendritic processing has been accepted up to now (Holden 1976, Koch et al 

1983, Av Ron et al 1993) Experiments and histology indicate tha t in different 

neurons dendritic processing can be quite diverse (Koch et al 1983) That is why 

the choice of the process Y was so detailed The birth and death process is not a 

unique conception for the two-point model When the mam stress is attached to the 

information processing, the detailed desciiption of ionic flows is abundant But once 

proposing neural electricity, it cannot stand m contradiction with ionic biophysics 

From this standpoint, different alternatives of defining dendritic potential Y can 

be found, (Tuckwell 1988a and 1988b, Av-Ron et al 1993, Lanský and Rospars 

1993, Rospars and Lanský 1993) 

One of the goals this paper pursues is to find a non-trivial description of the 

neuronal activity so tha t it might compete with other models thanks to its lesser 
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F i g u r e 4. Example of the potential 1 and Z traces at higher intensity of A (0.00168 
[ms - 1]) and appropriate higher spike rate (> 100 [Hz]). Time scale (50 ms) is denoted 
by rectangle at the right bottom. Trace Y is denoted by thick and trace Z by thin curve. 
Model parameters used are in Table 1. 

computat ional complexity. As compared to Av-Ron et al. (1993), Lanský and 
Rospars (1993), and especially Musila and Lanský (1992) (where the real t ime of 
simulation is listed), this goal was reached. The two-point or two-compartment 
model is not a unique solution to this problem. Tuckwell (1988b) notes a model, 
where the motoneuron is divided into seven compartments : three compartments 
for dendritic regions, soma, initial segment, first internode, and node. Differences 
between separate compartments are usually expressed according t o their contents 
of different ionic channels (Tuckwell 1988b; Av-Ron et al. 1993). We will comment 
our two-point model as two compartments of a membrane. The natural question 
in the two-point model is: why is the axonal potential Z influenced by Y and 
not vice versa? When we assume a given distance of points A and B and for 
the sake of continuity of solutions of the equation (1) we presuppose t h a t e.g. 
V(x, t) = ciV(A, t) + c2V(B, t) = ciY(t) + c2Z(t), for x^cxA + c2B, cx + c2 = 1 
(x being a convex combination of A and B) (regardless of the fact t h a t the solution 
of equation (1) is nonlinear), the Hodgkin and Huxley equation for axon does not 
answer the question because it allows an orthodromic as well as an antidromic 
conduction due to the symmetry of boundary conditions. The question is given a 
valid answer only by the assumption t h a t t h e neuron displays a remarkable decrease 
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in diameter from point A to B . Therefore the excitation is conducted only in the 
direction from A to B (Tuckwell 1988b). This proves an agreement of the two-
point model with more detailed and experimentally confirmed models of the neural 
membrane. 

The two-point model can be applied not only to the olfactory cell. The neurons 
of different populations differ in their activity and as one of their characteristics we 
can use the frequency spectrum. The frequency spectrum of Y (ť) is influenced by 
n and (A + p). As mentioned below equation (10), the whole model behaviour is 
influenced by n. This parameter will probably depend in different neurons on their 
functional purpose. A high n may be encountered in thalamic neurons serving 
as relays; a low n may be supposed in neurons with the gating function, e.g. a 
cat retinal ganglion (Koch et al. 1983). From this standpoint, this implies n being 
rather small in the olfactory cell, because it has a signal detection and amplification 
function. A striking phenomenon in our model is a relatively very low intensity of 
A and p. These values set large P2 in (3) whenever Ať is small enough, and then 
they cause relatively slow changes of Y(t) with respect to the time constant. 

Another issue is the question of biological relevance. In the introduction we 
sketched the properties of the olfactory cell in vertebrates. We may easily compare 
simulated results with biological records. In several descriptions of the olfactory 
cell (Lanský and Rospars 1993), A is a linear function of the concentration of an 
odorant. We have adopted this hypothesis. Not only in different species, but also 
among different cells in the same olfactory epithelium there are probably different 
coefficients in the linear dependency of A on concentration and so it is reasonable to 
abstract from the magnitude of this coefficient. We ran the simulation for A upper-
bounded and lower-bounded. In the real olfactory cell the zero concentration has 
no biophysical sense and the lowest concentrations start from the concentrations 
of both an electrophysiological and behavioural threshold. In the range of the 
lower bound of the odorant concentration the olfactory cell exhibits the spiking 
of the so-called background activity, which is Poissonian and in several species it 
is approximately 5 Hz, (Mountcastle 1974; Altner 1977). The upper bound for 
A is given by maximal reasonable concentrations of the odorant. A more marked 
simplification is yielded by the stationarity condition. The real olfactory cell works 
in the olfactory cycle, i.e. it is exposed to the unique air compound during one sniff 
cycle. The duration of the sniff cycle varies in different animals from hundreds of 
milliseconds to seconds. The simulation can be extended by including this cycle. 
The next simplification is that the threshold S is a constant. In physiology it 
probably rises in a sequence of events triggered by the odorant detection. This rise 
can be probably easily simulated by setting the threshold S as a saw-like function 
beginning with the rise of spiking frequency. Furthermore, on the next relay of the 
olfactory pathway, the signal of sniff cycle synchronization afferents surely into the 
olfactory bulb. A longer-term adaptation, or habituation, in the range of several 
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minutes, commonly observed in the olfaction, is beyond the scope of this study. 
As illustrated by Figs. 2 and 3, this model reproduces bursting which is ob

served in real neurons and olfactory cells. A more exact modelling of bursting would 
involve describing the potential Y in terms of the Fourier transform. Adding the 
periodical function of t ime to t h e potential Y can contribute to periods of bursts. 
Autocorrelograms of spike trains of our model have not shown any pronounced se
rial correlation. A higher correlation of consecutive ISIs can be modelled by adding 
rectangular pulses to the Y (or joining the third point Y1, corresponding t o the 
cascade of activating G-protein in the olfactory cell (Altner 1977)). 

Not less important are the implications of simulated d a t a t o the understanding 
olfactory pathway. Thousands of olfactory cell fibres converge into one mitral cell 
surrounded by the filigree lateral inhibition machinery. Thus the olfactory cell itself 
funtions as a detector with small n, X and p. 

T h e problems and goals challenging further investigation are: W h a t would 
be the adequate quantitative description of coding odour intensity for different 
odorants and at the higher relays of olfactory pathway? Directions are shown by 
Lanský and Rospars (1993). An above-mentioned extension of this model applied 
on the olfaction might include events accompanying the sniff cycle. Another task 
might be t o apply the two-point or compartmental and spiking model to specimens 
of more complicated neural cells. An interesting perspective face to face computer 
hardware development is to construct nets of stochastic and spiking models and to 
simulate the synaptic transmission in terms of compartments . 

C o n c l u s i o n 

One of the advantages of this approach is a relatively small computat ional com
plexity which promises in the future the tempt ing possibility t o construct simpler 
neural nets of such neurons and t o test quantitat ive hypotheses on their stochastic 
activity. 
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