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A b s t r a c t . A Monte-Carlo approach to analysis of dispersion in the tissue of a 
locally administered drug is presented. The distribution of a drug in the tissue is 
simulated as a distribution of randomly walking particles. The approach is demon
strated on a simple situation for which both experimental results and an analytical 
solution are known. The approach can be used in situations, where common nu
meric m e t h o d s are difficult to use, especially for analyses of drug transport in an 
inhomogeneous space, and problems with complex boundary conditions, e.g. in 
analyses of dispersion of anticancer agents locally applied into tumours. 
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I n t r o d u c t i o n 

Chemotherapy of central nervous system tumours is made difficult by the pre
sence of a blood-brain barrier t h a t prevents most anticancer drugs from leaving 
capillaries and entering the interstitial space of the brain tissue. Two methods of 
anticancer drug administration were developed to overcome this problem, namely 
chemoembolization and localized therapy. By chemoembolization, the drug is tar
geted to tissue sites through selective arterial catheterization using microcapsules 
with controlled release of anticancer agents (Nishino et al. 1986; Sakatoku et al. 
1984). With the other method, either a capsule with controlled release of an anti
cancer agent is implanted directly into the cancerous tissue (Yoshida et al. 1985, 
1989; Yamashi ta et al. 1986;) or the drug is delivered to the cancerous tissue by 
infusion via a microcannula (Dakhil et al. 1981; Kroin and Penn 1982; Penn et 
al. 1983). T h e approach presented herein allows to predict the distribution of 
anticancer agents in the tissue and to determine the region of the tissue reached 
by the drug. Various methods and arrangements of drug administrations as well 
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as boundary effects and space variations of drug transport constants due to tissue 
inhomogeneity can be taken into account in a straightforward manner. 

Model description 

To make arguments simpler, let us start with a Cauchy problem for a one-dimen
sional diffusion equation 

dc(x,t) _ a2c(x,t) 
dt dx* K ' 

with the initial condition 
c(x,0) = c0(x) 

and the boundary condition 

c(x, t) —• 0 a s i - » oo, all t 

This problem can, of course, be easily solved. We will, however, consider the fol
lowing method of finding the concentration profile c(x,t) for some t > 0. Equation 
(1) may be interpreted as a Fokker-Planck equation (FPE) describing evolution 
of (non-normal'zed) probability distribution c(x, t) of a position x(t) of a parti
cle, undergoing Brownian motion on a line, with initial position x(0) distributed 
according to probability density co(x) at t — 0. Generating a large number (say, 
N) of particles, starting their Brownian random walks at positions, distributed 
according to probability density Co(x), one can estimate c(x,t) considering number 
of particles, found in some neighbourhood of x at time t, i. e., a histogram of 
particle positions at time t gives some approximation of the concentration profile 
c(x, t). The Khintchine limit theorem (Feller 1950) states that, under fairly general 
conditions regarding the random walk, the (appropriately normalized) distribution 
of particles at time t approaches c(x,t) as N increases to infinity. 

This is the basic idea underlying Monte-Carlo imitations of transport processes 
(Uffink 1990). The procedure consists of: 

1. Rewriting and interpreting the corresponding transport equation as a Fok
ker-Planck equation, and constructing random walks with probability distribution 
obeying (to a desired degree of accuracy) the FPE and the corresponding initial 
and boundary conditions. 

2. Generating a large number of realizations of the random walks and con
structing histograms of particle states in the times of interest. 

Though it may not seem a good idea to solve equation (1) in this manner, this 
approach proved to be very efficient in problems with complex boundary conditions, 
where common numeric methods for solving partial differential equations are dif
ficult to use. Moreover, in some cases it is possible to construct a random walk 
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imitation, though the transport equation and/or the initial or boundary conditions 
are difficult to formulate. 

The general transport equation, describing drug dispersion in the brain tissue, 
can be written as follows (Morrison and Dedrick 1986): 

0 c ^ ' * ) = DAc(x, t) - vVc(xt) - PA(c(xt) - CB) - S. (2) 

Here, c(x, t) is the concentration of free drug, averaged over microscopic inhomogen-
ities of the tissue (cells). The first and second terms on the right side correspond 
to diffusion and convection, D is the diffusion coefficient of the drug, equal to the 
product of the extracellular fraction and tortuosity-corrected extracellular diffusion 
constant, and v is convective flow velocity. The third term describes elimination of 
the drug by capillaries; p is the capillary permeability, and A is the capillary area 
per unit tissue volume. CB is the concentration of the free drug in the plasma. 
Finally, 5 is a reaction term describing reaction of the drug with macromolecules. 
In case there is no substantial depletion of protein binding sites for the drug, S 
may be expected to depend linearly on c(x,t). 

Following Morrison and Dedrick (1986), we adopt several additional assump
tions concerning the coefficients in eq.(2): (i) There is no convective flow, i.e., v — 0 
throughout; (ii) Resorption of the drug from plasma can be neglected, i.e., CB = 0; 
(iii) S depends linearly on c(x,t) : S = k • c(x,t). Under these assumptions, eq.(2) 
becomes 

^ ^ - = DAc(x,t)-{k+pA)c(x,t) (3) 

In practice, it is possible to measure the total amount of drug contained in 
macroscopic sections of the volume of interest. Therefore, another equation is 
needed, describing the kinetics of the bound drug concentration field b{x,t). In our 
case, such an equation would read 

^ 2 Ŕ = kc{x,t)-k'b(x,t) (4) 

simply stating that the bound drug is produced by binding of the free drug and 
disappears due to protein turnover. 

We will now define rules for random walks, corresponding to eqs. (3) and (4). 
These rules can be derived from a finite-difference approximation of eqs. (3),(4). 
The resulting random walks take place on a three-dimensional lattice, i.e. random 
walks with fixed displacement per step u (however, with random direction, as will 
be shown below), and fixed time interval per step r. 

Such walks can easily be implemented on a computer, because they can be 
simulated using only uniformly distributed random numbers, and lattice structure 
of the available space allows for simple implementation of boundary conditions. 
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The error of discretization can be made as small as desired by choosing sufficiently 
small parameters u and r The random walks are defined by the following rules 
(1) Each particle can adopt one of three states 

- Free s tate (F) at some position (x,y,z), in which it is allowed to diffuse, 

- Bound state (B) at some position (x,y,z), corresponding to an immobilized 
(bound) particle, 

- Lost state (L) corresponding to a particle, which was resorbed into a capillary 
net, 

(n) A particle in the free state may 

- Move to an adjacent position 

x' = x + u*r\ 

y' = y + u*r2 

z' = z + u*rz 

with probability PFF,ri<r2,i'3 are random numbers, which adopt the values + 1 

and —1 with equal probabilities (Fig 1), 

- Change its s ta te to bound (B) at (x,y, z) with probability PFB, 

- Change its s ta te to lost (L) with probability PFL, 

(m) A particle in the bound state may change its state to lost (L) with probability 

PBL, 
(IV) A particle in the lost state will remain lost forever 

(-U.-U.+U) 

(-U.+U.+I 

(-U.-L.-U) 

(-U.+U.-U) 

'(+U 

(+U.-U.+U) 

,+u,+u) 

(+U.-U.-U) 

(+U.+U.-U) 

Figure 1. Eight possible step 
displacements of a particle A 
particle located at the centre of 
the cube (grey circle) can in one 
step move to one of the eight ver
tices of the cube, u is the lattice 
constant 

Given lattice constant u and the kinetic parameters D, p A, k, k', the time 

per step r and the transit ion probabilities can be expressed as follows Taking into 

account the relation between the diffusion coefficient D and the variance of the 

one-step probability distribution a2 (cf Fig 1) 

D a 
67; 

3u2 
(5) 
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it is possible to express r in terms of D and u; 

PFF = 1 - PFB - PFL, PFB = kT, pFL = pAr, pBL = k'T (6) 

To make the definition complete, one has to specify where the random walks 
would s tar t and how would they behave on the boundaries. This requires specifica
tion of the appropriate initial and boundary conditions for eqs. (3),(4), and these 
in turn depend on the way of administration of the drug to the tissue. 

We have used the data of Kroin and Penn (1982) to verify the random walk 
model. In their experiment, a 0.32 m m cannula was stereotactically placed in the 
centre of the cerebellum of a normal rat and then cisplatin was infused into the brain 
at a concentration of 1000 ngfi\~l by means of an Alzet osmotic minipump at a rate 
of 0.9 / z l h - 1 . After 160 hours, the cerebellum was removed and cut into sagittal 
sections approximately 1mm thick. The average total platinum concentration per 
section was determined by atomic absorbtion spectrophotometry. 

The corresponding initial and boundary conditions for random walks are as 
follows: Particles are created in free state at the tip of the cannula at moments 
uniformly distributed over infusion time (initial); diffusing particles are forbidden 
to enter the region occupied by the cannula (boundary). 

Table 1. Parameters relative to the experiment of Kroin and Penn (1982). 

Parameter 

q [/imol-s-1] 

qv [ml-s_I] 

t [s] 

r [cm] 

Definition 

Mass infusion rate 

Volume infusion rate 

Time of infusion 

Cannula radius 

Value 

8.3 x 10 - 7 

2.5 x 10 - 7 

5.76 x 105 

0.032 

A computer program written in C language was developed for drug distribution 

simulation. The input data used as starting parameters for simulation are listed 

in Tab. 1 and Tab . 2. We have chosen the lattice constant u equal to 0.1 mm. 

The following additional input parameters were calculated: step t ime r , effective 

mass of plat inum per particle m, and the transition probabilities P F F , P F B , P F L and 

PBL- The calculated values of the input parameters for the model are in Tab. 3. 

Twenty-three thousand random trajectories were generated according to the rules 

described above, and particles with the x coordinate between (k x 0.1 — 0.05)mm 

and (Ár x 0.1 + 0.05)mm were counted to give mass of cisplatin in the Ar-th section. 
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Table 2. Kinetic constants for cisplatin dispersion in the brain tissue (Morrison and 
Dedrick 1986) 

Parameter 

k [min -1] 

k' [min - ] 

p [cm-s-1] 

A [cm-1] 

D [cm2 s - 1 ] 

Definition 

Binding rate 

Turnover rate 

Capillary permeability 

Capillary area per unit 
volume of brain 

Diffusion coefficient of 
cisplatin in the tissue 

Value 

(5 ±2.3) x 1 0 - 3 

(1.4± 1.1) x 10 - 6 

(9.0 ±4.4) x 1 0 - 7 

240 

1.9 x 10 - 6 

Table 3 . Parameters of numeric simulation 

Parameter 

r [ s ] 

m [ng] 

u [mm] 

ZFB 

PBL 

PFL 

Definition 

Time interval for one step 

Mass of Pt per particle 

Lattice constant 

Binding probability per step 

Turnover probability per step 

Resorption probability per 
step 

Value 

25 

4.07 

0.1 

2.08 x 1 0 - 3 

5.83 x 10 - 6 

5.41 x 1 0 - 3 

Results 

The simulated distribution of platinum, averaged over 0.1 m m sections, can be 

seen in Fig. 2. The distribution shows an approximately exponential decrease with 

distance. This picture also allows to grasp the quality of the simulation results: 

variances of the distribution curve values are proportional to numbers of particles 

found in the corresponding sections. 

In Fig. 3 we present a comparison of our results to those of Kroin and Penn 

(1982). In this Figure, the simulated distribution is recalculated to obtain infor

mat ion comparable to that presented by Kroin and Penn (1982). Namely, we have 

assembled data points to represent amounts of platinum in 1 m m sections, and 

used masses of the sections (published by Morrison and Dedrick 1986) to correct 

our da t a for variations in thickness of the sections analyzed for plat inum by Kroin 

and Penn (1982). 
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F igu re 2. Simulated concentration profile of cisplatin after a 160 hour infusion to the 
rat brain tissue. Twenty-three thousand trajectories were generated in the course of 
simulation. The curve represents amounts of platinum found in 0.1 mm thick sagittal 
sections of the brain as a function of distance from the cannula. 

•3 °-5 

0 1 2 3 4 

Distance fron t h e source of infusion [MM] 

F igu re 3 . Comparison of the experimental curve (Kroin and Penn 1982, solid line) with 
our random walk simulation (dashed line). The data presented in Fig. 2 were assembled in 
order to reproduce values over sections, analyzed for platinum by Kroin and Penn (1982) 
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F i g u r e 4. Simulated concentration profiles of platinum in the brain tissue after 160 
(solid line) and 320 (crosses) hour infusion time. Twenty-three thousand trajectories 
were generated in the course of simulation. The curve represents amounts of platinum, 
found in 0.1 mm thick sagittal sections of the brain as a function of distance from the 
cannula. 

In Fig. 4, concentration profiles taken after 160 and 320 hours infusion t ime 

are compared. The only difference between the two profiles is that , after a 320 

hour infusion, the concentrations of P t are approximately twice those taken after 

160 hours. Otherwise, the concentration profile remains the same. 

D i s c u s s i o n 

We have used the da ta of Kroin and Penn (1982) to test the Monte-Carlo approach 

to investigation of dispersion in the tissue of a locally dosed drug. The situation 

under consideration is quite simple, and indeed, Morrison and Dedrick (1986) have 

presented a closed-form analytical solution to the transport equation for this case 

Thus , the data used herein are an extremely useful material for the testing of any 

method of modelling drug transport in tissues. In our simulations, a more com

plicated case was considered compared to the treatment of Morrison and Dedrick 

(1986): we have explicitly accounted for the presence of the cannula, represented by 

a semi-infinite rod-like region where the particles were forbidden to enter. However, 

our results proved the approximation: there was practically no difference between 

our results and those of Morrison and Dedrick (1986). 
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As can be seen from the results presented above, a good agreement was ob
tained between experimental and simulated data. A relatively simple manner , in 
which Monte-Carlo algorithms can be constructed for complex situations, where 
one not only cannot hope to find an analytical solution to the transport equation, 
but where it is difficult to implement common algorithms for solution of part ial 
differential equations, seems to outweigh its cost in terms of computation t ime. 

We stress tha t no assumption was made about a similarity in movement of our 
fictive particles and the molecules of the drug. In fact, (1) no such assumption is 
necessary for our method to work well in case the transport equation describes the 
drug dispersion with sufficient accuracy; (2) various random walks can be used to 
simulate the same form of distribution. 

The problem considered reads as follows: Given kinetic constants and the 
method of administrat ion, find the drug concentration profiles at some set of times 
after administrat ion. In practice, however, one is generally faced with an inverse 
problem, namely: Given a set of (as a rule, low resolution) concentration profiles, 
find the kinetic constants. If there is not a closed formula to fit the data , such a 
problem may be rather difficult to solve, or, at least, its solution may be rather 
t ime consuming. In these situations, the Monte-Carlo method is also applicable, 
but its use requires a lot bf computation t ime. 

There is one important point which should be drawn out of the present results, 
as demonstrated in Fig. 4: As long as saturation effects can be neglected, the 
shape of the drug concentration profile is determined by the kinetic constants, 
characterizing the t ransport of the drug (diffusion coefficients, binding constants 
etc.), rather than by the amount of the drug administered. A substantial increase 
of the affected volume can only be achieved by using drugs with different values 
of constants D,kD,k', and p (for example, methotrexate D = 1.2 x 1 0 - 6 c m 2 / s 
(Collins and Dedrick 1983)) that characterize the drug. We find this important 
from the point of view of evaluation of various methods of local administration of 
anticancer agents. 

The approach presented herein is applicable for various shapes of microcapsules 
and for drugs with various values of kinetic constants. It also allows to simulate 
drug dispersion in inhomogeneous space. If the transport equation with its initial 
and boundary conditions is given, the rules for random walks can be derived in 
a straightforward manner from a finite difference approximation of the t ransport 
equation. The Monte- Carlo approach described here may be an efficient tool for 
the prediction of therapeutic effects of anticancer agents administered locally into 
the tissue. 
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