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A b s t r a c t . The molecular structures of animal and human plasma membrane 

( C a 2 + + Mg 2 + ) -ATPases are not completely understood in part due to the fact 

tha t no suitable single crystal is available. The elucidation of the two-dimensional 

s t ructure is in progress. The amino acid sequences of human erythrocyte and rat 

p lasma membrane C a 2 + pump isoforms as well as of the pig smooth muscle plasma 

membrane C a 2 + p u m p are already known. This article reviews the present s tate 

of the knowledge in ( C a 2 + + Mg 2 + ) -ATPase research of animal and human plasma 

membranes performed in the past few years, concerning in particular 

- arrangements of proteolytically cleaved fragments, and relations between the 

erythrocyte ( C a 2 + + Mg 2 + ) -ATPase in situ and the purified red cell enzyme, 

- oxidative changes. 
Results of different experimental approaches concerning the structure of ( C a 2 + + 
Mg 2 + ) -ATPases rather than the applications of the methods used are emphasized. 

K e y words : ( C a 2 + + Mg 2 + ) -ATPase — C a 2 + pump — C a 2 + transport — Plasma 

membrane — Oxidative changes — Superoxide anion radical (0~2) — Tert-Butyl 

hydroperoxide — Electron spin resonance (ESR) —Iron ion —Ferric (Fe 3 + ) — 

Ferrous ( F e 2 + ) . 

A b b r e v i a t i o n s : D T T , 1,4-dithiothreitol; EGTA, ethylene glycol-bis(/?-amino-

ethyl ether)N,N,N',N'-tetraacetic acid; EP, phosphorylated intermediate of the 

enzyme; ESR (EPR) , electron spin (paramagnetic) resonance; GSH, reduced glu­

tathione; PAGE, polyacrylamide (slab) gel electrophoresis; PCMB, p-chloromercu-

ribenzoate; SDS, sodium dodecyl sulfate. 

I. I n t r o d u c t o r y remarks 

Although no details of the structure of ( C a 2 + + Mg2 +)-ATPases from various 
cell types are completely known, progress in understanding selected properties 
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of ( C a 2 + + Mg 2 + ) -ATPases has been made on the basis of model investigations. 
Experiments in the recent years promoted a discussion with regard to: 

- which enzymes are C a 2 + pumps, 

- in which states do they exist, 

- which molecular structures can be found in these states, 

- how do these molecular structures arise, 

- by what mechanisms do the reactions take place and how fast, 

- what are the physiological functions of ( C a 2 + + Mg2 +)-ATPases, 

- how are these processes regulated. 

Due to the lack of precise knowledge about the structure and structure-function 
relationships (Scarborough 1982; Carafoli 1985; Pedersen and Carafoli 1987a,b; 
Dhalla and Zhao 1988; Serrano 1988; see Fleischer and Fleischer 1988) a certain free 
choice of classification of ATPases is inevitable. The erythrocyte (Ca2+-(- M g 2 + ) -
ATPase localized exclusively in the plasma membrane, and the (Ca2 +- | - M g 2 + ) -
ATPase of the sarcoplasmic reticulum membrane of the heart muscle have been 
studied most intensively and are the best characterized ( C a 2 + + Mg 2 +)-ATPases. 
Therefore, they are being used as a reference to ATPases of different sources. 

General views on approaches to elucidate the structure 

Molecular structures of animal and human plasma membrane ( C a 2 + + M g 2 + ) -

ATPases are not completely understood in part due to the fact that no single crystal 

has so far been available. The three-dimensional structure remains unknown. The 

elucidation of the two-dimensional structure is in progress. The amino acid se­

quences of human erythrocyte (Verma et al. 1988; Strehler and Carafoli 1988; 

Strehler et al. 1990) and rat (Shull and Greeb 1988; Greeb and Shull 1989) plasma 

membrane C a 2 + p u m p isoforms as well as of the pig smooth muscle plasma mem­

brane C a 2 + pump (De Jaegere et al. 1990) are already known. In other words, at 

present it is impossible to get a clear image or to make an acceptable generalization 

without phenomenological approach to the structural questions. Hence, different 

approaches and results thereof are used to describe the structure. Radical reac­

tions and oxidative changes are also involved. Radical reactions cause undesirable 

s t ructural changes; nevertheless, they could be used systematically to elucidate the 

s t ructure . With this intention, a model was designed of the C a 2 + pump m situ 

(Sarkadi et al. 1978, 1980a,b, 1986a; Enyedi et al. 1980, Stieger and Schatzmann 

1981). 

On this background and the present state of art, the article aims at discussing 

some aspects of animal and human plasma membrane ( C a 2 + + Mg 2 + ) -ATPases 

based on a critical review of the literature and on some own results in the field. 
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II . ( C a 2 + + M g 2 + ) - A T P a s e s of an imal a n d h u m a n p l a s m a m e m b r a n e s : 
p a s t a n d r e c e n t focus 

Recent studies were focused on disclosing relations between: 

- the molecular structures of different(Ca2+ + Mg2 +)-ATPases, 

- the phosphorylation/dephosphorylation of the enzyme intermediates, 

- the C a 2 + t ransport . 

Most of the studies were performed on the non-purified or purified enzymes of 
human or rat erythrocyte membranes, human thrombocyte membranes and sar­
coplasmic reticulum membranes of rabbit heart muscle at the level of proteolytically 
cleaved polypeptides. The molecular weight of C a 2 + pumps, the Ca 2 + -dependent 
phosphorylation and the active C a 2 + t ransport after limited proteolysis, as well as 
dephosphorylation and calmodulin binding were measured. Purification and recon-
st i tut ion of plasma membrane C a 2 + pumps (see Penniston et al. 1988), isolation 
and reconsti tution of C a 2 + pumps from human and porcine platelets (see Dean 
1988), and reconstitution of C a 2 + pumping of the cardiac sarcoplasmic reticulum 
(see Inui and Fleischer 1988) were described in detail. 

I I -A . F o r m e r i d e a s c o n c e r n i n g t h e s t r u c t u r e 

Former proposals for the structure of ( C a 2 + + Mg2 +)-ATPases reached different 
levels of abstractions (Scharff 1976, 1978, 1981; Scharff and Foder 1978; Gopinath 
and Vincenzi 1977; Jarre t t and Penniston 1977; Wolf et al. 1977; Sarkadi et al. 
1980b: Enyedi et al. 1980; Mauldin and Roufogalis 1980; Maretzki et al. 1980, 

1981, 1982; Reimann et al. 1981; Pedemonte and Balegno 1981; Carafoli et al. 
1982; Carafoli and Zurini 1982: Luterbacher and Schatzmann 1983). Therefore, 
a t tent ion was focused on detailed investigations of the properties (Carafoli et al. 
1982; Penniston 1982; Schatzmann 1982) and relations between the properties of 
( C a 2 + + Mg 2 + ) -ATPases (Carafoli et al. 1982; Schatzmann 1982; Sarkadi et al. 

1982, 1986a; Enyedi et al. 1985, 1986). Comparable properties offer a basis for 
relating s t ructural and /o r functional aspects of ( C a 2 + + Mg 2 + ) -ATPases of mem­
brane fractions of different intracellular or cellular origins or of unknown subcellular 
origin. 

I I - B . T h e C a 2 + p u m p in situ 

The C a 2 + pump in situ exists in a characteristic microenvironment resulting from 

the effects of the membrane on which it is located. Enzymes extracted from 

membranes often show different properties compared with the non-purified en-

zymes(Racker 1967; Coleman 1973). Thus, to study the enzyme, it is better to 
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preserve its natural environment as far as possible. Red cell Ca2 + pump was pre­
pared with special care to maintain the C i +" pump within the hydrophobic areas of 
the inside-out membrane vesicles (Sarkadi et al. 1980a). Complex structural and 
functional properties, and especially relations between these properties, of Ca2 + 

pumps m situ are criteria by which to characterize (Ca2+-|- Mg2+)-ATPases. 
A detailed methodological work has been done to solve one of the method­

ological problems in studies using non-purified plasma membrane Ca2 + pumps: 
their molecule-specific detection, i.e. the so-called "visualization" (Sarkadi et al. 
1986a). Visualization of non-purified plasma membrane Ca2 + pumps has been dif­
ficult, since the stability of phospho-acyl-intermediates strongly depends on the pH 
value used (Lichtner and Wolf 1980a; see Stekhoven and Bonting 1981; Heilmann et 
al. 1985), and since they occur in low concentrations in plasma membranes (Graf 
et al. 1980; Schatzmann 1982); the molecular weight and solubilization properties 
are similar to those of Band 3 polypeptides (Szász et al. 1978; Niggli et al. 1981b; 
Schatzmann 1982; Graf et al. 1982). Typical approaches to revealing of differences 
between (Ca 2 ++ Mg2+)-ATPases (Sarkadi et al. 1986a; Enyedi et al. 1985, 1986) 
have been: 
(i) the development of an acidic discontinuous slab SDS-PAGE system to maintain 

the concentrations of the several phospho-acyl-intermediate species, and at the 
same time to provide a good resolution of the non-purified plasma membrane 
pump protein; 

(ii) the application of low concentrations of ATP (0.1-0.3 /xmol/1, including 732P-
ATP) in the absence of added Mg2+ and in the presence of Ca2+ or Ca2 + and 
La3 + at 4°C (that warranted exclusive phosphorylation of the non-purified 
Ca 2 + pump and a stable maximum level of phosphoenzyme intermediates, 
even of the proteolytically activated Ca2 + pumps). 

The experimental approaches mentioned above resulted in the development of new 
ideas concerning the molecular structures and the mechanism of action of the red 
cell (Ca 2 + + Mg2+)-ATPase in situ, i.e. in the most approximate natural environ­
ment. The two types of (Ca 2 + + Mg2+)-ATPases in situ were further characterized 
by defining differences between them. 

II-C. Direct approaches to study the molecular s t ructures 

Up to this point no direct probes of the molecular structures of animal and human 
plasma membrane (Ca 2 + + Mg2+)-ATPases were available. This lack of information 
can be remedied by: 

- functional and structural mapping of the polypeptide regions of the animal and 
human plasma membrane Ca2 + pump proteins with polyclonal and monoclonal 
antibodies (Sarkadi et al. 1988a,b,c; Papp et al. 1988, 1989); 
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- amino acid sequence analysis (Filoteo et al. 1987; James et al. 1987, 1988, 

1989b; Carafoli 1988); 

- cloning techniques (Carafoli 1988; Strehler and Carafoli 1988; Verma et al. 

1988; Strehler et al. 1989, 1990; Shull and Greeb 1988; Greeb and Shull 1989; 

Brandt et al. 1988; Mann et al. 1989; Enouf et al. 1990; De Jaegere et al. 

1990); 

- stabilization and crystallization of the purified enzyme. Crystallization of 
the C a 2 + p u m p was successful in the sarcoplasmic reticulum only (Dux and 
Martonosi 1983a,b; Pikula et al. 1988; Taylor et al. 1988a,b; Miillner et al. 
1988; Martonosi et al. 1990; Molnar et al. 1990). 

The C a 2 + binding peptide region of skeletal ( C a 2 + + Mg 2 +)-ATPase and cardiac 

( C a 2 + + Mg 2 + ) -ATPase (Gangola and Shamoo 1986) as well as peptides of the 

calmodulin binding domain of the erythrocyte C a 2 + pump (Enyedi et al. 1989; 

Vorherr et al. 1990) have been synthesized and characterized. 

III . A r r a n g e m e n t s of proteo ly t i ca l ly c leaved fragments and re la t ions be ­
t w e e n t h e e r y t h r o c y t e ( C a 2 + + M g 2 + ) - A T P a s e in situ and t h e i so la ted 
purif ied red cel l e n z y m e 

The number and the nature of proteolytically cleaved fragments depend, to a large 

extent, on the use of either the enzyme in situ or the purified ( C a 2 + + M g 2 + ) -

ATPase. Based on the da ta obtained from experiments with limited proteolysis it 

was found that the cleaving sites are determined by the properties of the holoen-

zyme or of the partially cleaved enzyme, such as the primary amino acid sequence, 

the accessibility for proteases, and the micromedium (membrane environment). Se­

lected properties of the enzyme or its cleavage products, such as phosphorylation, 

C a 2 + t ransport or calmodulin binding, do not affect the cleaving sites. 

I I I -A. P r o t e o l y s i s p a t h w a y s 

Originally suggested by Sarkadi et al. (1986a) for the red cell C a 2 + pump in 

situ, phosphorylation, C a 2 + transport and calmodulin binding are different for the 
fragments A to D (Fig. 1). Three "cuts" or "sections" mapping the C a 2 + pump 
molecule in situ in different phosphorylated and non-phosphorylated fragments 
were suggested. Wi th trypsin producing subsequently "cut 1", "cut 2", and "cut 
3" , phosphorylated fragments of approx. molecular weights of 125 kDa, 90 kDa 
and 80 kDa are obtained. Chymotrypsin that produces "cut 3" and "cut 2" yields 
130 kDa and 80 kDa phosphorylated fragments. Pronase and papain producing 
"cut 2" and "cut 3" yield 90 kDa and 80 kDa phosphorylated fragments. With 
carboxypeptidase A producing "cut 3" a phosphorylated fragment of approx. 130 
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Figure 1. Putative model for the 
arrangement of the proteolytically 
cleaved functional parts in the pri­
mary structure of the erythrocyte 
calcium pump protein. A: 15 kDa, 
easily trypsin-cleavable fragment; 
B: 35 kDa, hydrophobic (membra­
ne-bound?) fragment, associates 
with fragment C under acidic con­
ditions in SDS; C : 80 kDa, fully ac­
tive calcium pump, membrane-
bound, binds and splits ATP, forms 
EP, binds and transports Ca 2 + , can 
be inhibited by La3+; D : 10-12 kDa 
regulatory fragment, binds calmod­
ulin, inhibits the activity of the 
pump in the absence of calmodulin. 
Tr.= trypsin; Pr.= pronase; Pap.= 
papain; Chy.= chymotrypsin; CPB. 
= carboxypeptidase A. (Reprodu­
ced from Sarkadi et al. 1986a). 

kDa is obtained. It has to be noted that proteolytic cleavings proceed under pro­
longed proteolysis. The appearance of a phosphorylated fragment smaller than 
80 kDa was expected from an exposure to higher trypsin concentrations and on 
prolonging digestion times. Indeed, the experimental conditions to detect a 76 
kDa phosphorylated fragment could be established (Enyedi et al. 1987; Papp et 
al. 1989). Identification has been based on indirect evidence, no direct procedures 
were available. The accessibility of all the fragments from the cytoplasmic leaflet 
of the erythrocyte membrane, i.e. from the outside of the red cell inside-out mem­
brane vesicles, suggests a looped arrangement of the C a 2 + pump molecule within 
the red cell membrane . It seems reasonable to conclude that the 15 kDa fragment 
obtained in the easiest way by trypsin digestion, and the 10 kDa fragment, are lo­
cated at the cytosolic leaflet of the erythrocyte membrane. In a recent study, it was 
shown that calpain-I digestion produces a 125 kDa phosphorylated fragment (Papp 
et al. 1989). If a 90 kDa fragment is already present, calpain-I yields an 81 kDa 
phosphorylated fragment. Proteolytic fragmentation and amino acid composition 
of the isolated and purified red cell C a 2 + pump were analyzed in detail in the past 
(Niggli et al. 1979a,b, 1981a,b; Graf et al. 1982; Carafoli et al. 1982; Carafoli and 
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Zurini 1982; Zurini et al. 1984; Benaim et al. 1984; Enyedi et al. 1987; James et 
al. 1989a). At this stage, numerous degradation products were obtained (at least 
14). The number of proteolytic fragments does not correlate with functional or 
s tructural properties of the purified enzyme. More recently, the purified red cell 
C a 2 + p u m p has been exposed to trypsin under conditions designed to enrich the 
90 kDa, 85 kDa and 76 kDa fragments (Zvaritch et al. 1990). 

I I I - B . F u n c t i o n a l d o m a i n s 

The portions of the erythrocyte C a 2 + pump in situ which bind monoclonal anti­
bodies raised against the purified red cell C a 2 + pump molecule could be detected. 
Three groups of monoclonals were revealed after separation of the phosphoprotein 
on nitrocellulose, reaction with monoclonal antibodies, peroxidase staining and au­
toradiography of the same blot (Sarkadi et al. 1988a,b,c). Monoclonal antibodies 

(A) are directed against the 140 kDa holoenzyme in situ. Monoclonal antibodies 
(B) bind to the 80 kDa tryptic fragment and the 120 kDa chymotryptic frag­
ment . Monoclonal antibodies (C) react with the 35 kDa tryptic fragment and the 
120 kDa chymotryptic fragment. The correlation with the known proteolytically 
cleaved functional parts in the primary structure of the erythrocyte C a 2 + pump 
in situ allows to characterize functionally the immunochemical domains. It was 
suggested tha t three states A , B , C are reflected in different kinetic properties of 
the erythrocyte C a 2 + pump in situ (Sarkadi et al. 1988b). Distinction between the 
individual s tructural states is a prerequisite for an interpretation of the kinetics 
measured in the model systems. 

Some kinetic aspects 

Structural and kinetic da ta supporting the idea of three states have been reported 
in studies showing the proteolytically derived conversion of the holoenzyme in situ 
to 125 kDa, 90 kDa, 81 kDa and 76 kDa phosphorylated fragments (Enyedi et 
al. 1987; Papp et al. 1989). A calmodulin-like activation, characterized by a 
high Vmax, an intermediate C a 2 + affinity (Kc^+ approx. 0.4-0.5/imol/l) and a 
sigmoid calcium activation curve, is produced by trypsinization yielding an 81 kDa 
phosphorylated fragment. A lipid-like activation, characterized by a high Vmax, 
a low calcium affinity (Kca?+ approx. 0.15-0.2/imol/l) and no cooperativity in 
the calmodulin dependence, is obtained by further trypsinization to yield a 76 kDa 
phosphorylated fragment. In summary, these results provide evidence that different 
polypeptide regions of the enzyme are responsible for the regulation (Enyedi et al. 
1987). The activation/deactivation cycle of the erythrocyte C a 2 + pump in situ can 
be explained in terms of a Ca 2 + -dependent regulation via calmodulin or calpain, 
and a Ca 2 + - independent regulation via acidic lipids and trypsinization (Scheme 1.). 
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Spatial model 

Continued effort is being devoted to analyse the amino acid sequence of ( C a 2 + + 
Mg 2 + ) -ATPases . The fragmentation of the purified red cell C a 2 + p u m p with pro­
teolytic enzymes yields small polypeptides; their amino acid sequences are being 
determined. The ATP-binding site of the fluorescein isothiocyanate-reactive region 
(Filoteo et al. 1987), a human calmodulin binding domain (James et al. 1988), a 
h u m a n phosphorylation domain (James et al. 1987) as well as the C-terminus of 
a p lasma membrane Ca 2 + -ATPase from bovine brain (Brandt et al. 1988; Mann 
et al. 1989) have been sequenced. The cAMP-dependent phosphorylation site 

low Vm „ , high Kc, 
CALCIUM - DEPENDENT 

REGULATION 

CALCIUM - INDEPENDENT 

REGULATION 

( 76 kDa ) 

high Vm „ , low Kc, 

S c h e m e 1. Different kinetic states of the human red cell membrane Ca2 + pump. State 
A is characterized by low Vmix and high (above 10 /imol/1) K1/2(Ca?+); State B is char­
acterized by a high Vmax and intermediate (0.4-0.5 /imol/1) K1/2(Ca.2+), with a high 
degree of cooperativity in calcium activation; State C represents the fully active en­
zyme with high Knax and low (0.15-0.2/imol/l) A'i/2(Ca2+). The calcium-dependent and 
the calcium-independent routes of transitions are indicated. PI, phosphatidylinositol; 
PIP, phosphatidylinositol-4-phosphate; PIP2, phosphatidylinositol-4,5-bisphosphate; PA, 
phosphatide acid. (Reproduced from Papp et al. 1989). 

located on the C-terminal end of the calmodulin binding domain (Ser 1178) has 
been confirmed (Neyses et al. 1985; Verma et al. 1988; James et al. 1989b). The 
amino acid sequences of human erythrocyte ( C a 2 + + Mg 2 + ) -ATPase isoforms es­
tablished by protein chemistry and DNA cloning techniques (Verma et al. 1988; 
Strehler and Carafoli 1988; Strehler et al. 1990) and of rat plasma membrane 
C a 2 + pump isoforms (Shull and Greeb 1988; Greeb and Shull 1989) as well as of 
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the pig smooth muscle plasma membrane C a 2 + pump (De Jaegere et al. 1990) have 
been reported. Circular dichroism and fluorescence spectroscopy supplied valuable 
information on the stereochemical situation. The helical content of the pig erythro­
cyte Ca 2 + -ATPase decreased by approx. 10% upon transition from the Ei-s ta te 
to the E2-state (Krebs et al. 1987). On the basis of the amino acid sequence 
analysis, cloning techniques and stereochemical information, a spatial model of the 
erythrocyte ( C a 2 + + Mg 2 + ) -ATPase has been proposed (Carafoli 1988; Carafoli et 
al. 1989a,b). This model doubtlessly represents a significant contribution to our 
understanding of the enzyme structure. 

I I I - C . C o n f l i c t i n g findings c o n c e r n i n g t h e a r r a n g e m e n t s 

I I I - C . l . T h e bui l t - in - inh ib i tor 

It is well established tha t mild proteolysis mimics the effect of calmodulin on the 

C a 2 + p u m p in red cells (Sarkadi et al. 1980b; Enyedi et al. 1980; Taverna and 

Hanahan 1980; Niggli et al. 1981a; Stieger and Schatzmann 1981; Adunyah et 

al. 1982). Calmodulin increases the maximum transport rate {VmaxB is approx. 

3-5 x VmaxA; VmaxA = 1-2 — 10 mmol/1 cells x h = 0.3 — 2 mmol/g membrane 

protein x h, as measured in ghosts, intact red cells or inside-out membrane vesicles 

(Romero and W h i t t a m 1971; Schatzmann and Rossi 1971; Schatzmann 1973; Quist 

and Roufogalis 1975; Sarkadi et al. 1977, 1980a; Macintyre and Green 1978; Szasz 

et al. 1981; Enyedi et al. 1987)). Calmodulin decreases the /rca2+ (-^Ca2+A i s 

approx. 3—4xKca?+B> -^ca2+B = 10-15pmol/l, incubation media contain unbuffered 

C a 2 + (Sarkadi et al. 1978)). Calmodulin binding to red cell inside-out membrane 

vesicles treated by trypsin is removed. The idea of a calmodulin-binding domain 

of the red cell C a 2 + pump functioning as a built-in-inhibitor was first suggested 

by Sarkadi et al. (1980b) and Enyedi et al. (1980). Its action is switched off by 

calmodulin, mild trypsin t reatment and lipid modification. This built-in-inhibitor 

carries the calmodulin acceptor site, brings about the reduction in affinity of C a 2 + 

sites, e.g. being involved in translocation of C a 2 + , and loses its inhibitory effect 

when calmodulin binds to it. The discrepancies concerning the molecular weight 

of the calmodulin-binding fragment (Sarkadi et al. 1980b, 1982; Enyedi et al. 

1980; Carafoli et al. 1982; Carafoli and Zurini 1982; Wuytack et al. 1982, 1984; 

McDonald et al. 1982; Benaim et al. 1984; Zurini et al. 1984) could be overcome 

(Sarkadi et al. 1986a; Zurini et al. 1984): 

(i) Electrostatic binding between fragments cleaved off by trypsin exists in SDS-

PAGE. 

(ii) There is a critical pH value in SDS-PAGE. Associated fragments occur below 

this value, and they dissociate at higher values. 
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(iii) Factors such as the type of protein precipitation, composition and pH value of 
the sample, the amount of the base to neutralize the sample, may influence the 
association behaviour of digested fragments of (Ca2 ++ Mg2+)-ATPase during 
SDS-PAGE. The critical points are pKa, pH and buffer capacity of buffer 
substances used for SDS-PAGE. It is up to the individual experimentátor to 
determine which pH and buffer concentrations are suitable to suppress the 
association of fragments. 

Rossi and Schatzmann (1982) showed that in the absence of Ca2 + during digestion 
trypsin has no effect on the calmodulin depleted Ca2+-ATPase activity in red cell 
inside-out membrane vesicles, whereas in the presence of Ca2+ trypsin stimulates 
this activity. Ca2 + was not responsible for the action on trypsin itself. One ex­
planation has been offered that trypsin cleaves off a calmodulin receptor in the 
absence of Ca2 + and in the presence of Ca2+ a peptide is removed which con­
tains the calmodulin receptor and an inhibitory sequence. However, Ca2 + is not 
absolutely required for trypsin to be activated and to eliminate the calmodulin 
stimulation of the erythrocyte Ca2 + pump (Sarkadi et al. 1986a). 

Experiments with purified erythrocyte Ca2 + pump involving limited proteol­
ysis by trypsin favoured a 5 kDa fragment which seems to be fully responsible for 
calmodulin stimulation, and a 4 kDa fragment containing the calmodulin binding 
site (Zurini et al. 1984; Benaim et al. 1984, 1986). Experiments with a cleav-
able radioactive photoaffinity cross-linker (James et al. 1988) and azido-modified 
calmodulin (Zurini et al. 1984) led to the attractive hypothesis that the purified 
erythrocyte Ca2 + pump carries a second calmodulin binding site with a low affinity. 
No detailed investigation has as yet been performed to test this assumption. 

I I I -C.2 . Oligomerization 

Physicochemical evidence for an interaction between the purified erythrocyte, 
C12E8 soluble, phosphatidylcholine supplemented Ca2+-ATPase molecules has in­
dicated that a transformation from a calmodulin-independent to a calmodulin-
dependent form occurs as suggested by kinetic data (Kosk-Kosicka and Bzdega 
1988a). Oligomerization replaces the interaction of calmodulin with the Ca2 + 

pump (Kosk-Kosicka and Bzdega 1988b; Kosk-Kosicka et al. 1990). Using ra­
diation inactivation to determine the size of the red cell (Ca2 ++ Mg2+)-ATPase, 
the enzyme was found to exist in the dimeric form (Minocherhomjee et al. 1983; 
Cavieres 1984). A question difficult to answer is whether oligomerization of plasma 
membrane (Ca 2 + + Mg2+)-ATPase has any role to play in the transport of Ca2 + . In 
sarcoplasmic reticulum membranes an oligomeric structure of the (Ca 2 + + Mg2+)-
ATPases has often been supposed to be presented (se Michalak 1985; M0ller et al. 
1988). This idea has been used to explain how the enzyme might function to regu­
late its full enzymatic activity, which is supported by the fact that approx. 60-70% 
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of the protein of the sarcoplasmic reticulum membrane is (Ca2 ++ Mg2+)-ATPase 
(Martonosi 1969). However, in sarcoplasmic reticulum an oligomeric form of the 
(Ca 2 + + Mg2+)-ATPase does not significantly account for changes in enzymatic 
activity (Le Maire et al. 1976a,b; J0rgensen et al. 1978; M0ller et al. 1980). 

III-C.3. Lipid requirement 

Several experiments have been designed to demonstrate the specificity of the lipid 
requirement of (Ca2+-f- Mg2+)-ATPase for its action. As shown in experiments 
with membrane-bound or purified and reconstituted (Ca2+-f Mg2+)-ATPases the 
same changes in Ca2 + affinity and maximal velocity of Ca2+ transport as caused 
by calmodulin and mild proteolytic digestion during the conversion from A to B 
states are produced by: 

- lipid depletion with organic solvents, detergents (Gietzen et al. 1980a,b; Mi-
nocherhomjee et al. 1982); 

- phospholipase A2 (Taverna and Hanahan 1980; Al-Jobore and Roufogalis 
1981); 

- addition of phosphatidylinositol, polyphosphoinositides, phosphatidylserine, 
lyso-phosphatidylcholine, phosphatidic acid, oleic acid, linoleic acid (Roelof-
sen and Schatzmann 1977; Ronner et al. 1977; Peterson et al. 1978; Niggli 
et al. 1979a, 1981a,b; Gietzen et al. 1980a,b; Carafoli et al. 1980a,b, 1982; 
Al-Jobore and Roufogalis 1981; Niggli and Carafoli 1981; Stieger and Luter-
bacher 1981; Carafoli and Zurini 1982; Sarkadi et al. 1982; Minocherhomjee 
et al. 1982; Adunyah et al. 1982). However, phosphatidylcholine, phos-
phatidylethanolamine or cholesterol did not have corresponding effects, i.e. 
they had little effect or inhibited the enzyme activity. 

- Incubations of red cell inside-out membrane vesicles with phosphatidylinosi­
tol-, phosphatidylserine-, phosphatidylcholine-, phosphatidylethanol-amine-, 
or sphingomyelin-liposomes showed analogous effects as the corresponding 
lipids without mesophase (Sarkadi et al. 1982). 

The experiments have not pointed out to a specific lipid for the (Ca 2 + + Mg2 +)-
ATPase to develop its action. However, the molecular basis of information transfer 
across the protein structure may be influenced by one or more specific signaling 
lipids. Interesting candidates are the lipids of the phosphatidylinositol cycle (Tav­
erna and Hanahan 1980; Sarkadi et al. 1982; Choquette et al. 1984; Enyedi et al. 
1987). It might be that a lipid binding domain of the enzyme confers a binding 
specificity on the ligand, resulting in an energy minimum immediately after the 
interaction. 

Carafoli and Zurini (1982) proposed that calmodulin, mild proteolysis as well 
as lipid modification increase the accessibility for the substrates on the active site 
of the red cell enzyme by conformational transition. It is remarkable that the 
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experimental findings do not reveal any change in the ATP affinity during the 
conversion from A to B state and vice versa. It may be assumed that only the 
accessibility to the Ca 2 + -b ind ing sites is altered. Based on this experiments tha t 
lipid modification mimics the action of calmodulin as well as mild the action of 
proteolysis there may be similarities in the action mechanisms in a general way, 
e.g. through influencing membrane fluidity. Evidence that the accessibility of 
active sites changes with membrane fluidity has not been obtained. 

I I I - D . Charac ter i s t i c s of the p h o s p h o r y l a t e d i n t e r m e d i a t e f o r m a t i o n 
I I I - D . l . P h o s p h o r y l a t i o n / d e p h o s p h o r y l a t i o n 

The C a 2 + pump can be phosphorylated in the presence of ATP under the influence 

of C a 2 + . Characteristics of the phosphorylated intermediate (EP) formation of the 

C a 2 + pump in red cells are as follows: 

- C a 2 + is indispensable. The phosphorylation requires micromolar concentra­

tions of C a 2 + (Knauf et al. 1972, 1974; Katz and Blostein 1973, 1975; Szasz et 

al. 1978). The concentrations of C a 2 + for half-maximal effect are 7 pmol/1 in 

the presence of 125 jzmol/1 M g 2 + (Rega and Garrahan 1975), and 0.2 pmol/1 

without M g 2 + (Szász et al. 1978). 

- M g 2 + (Katz and Blostein 1975; Rega and Garrahan 1975; Garrahan and Rega 

1978; Enyedi et al. 1980; Lichtner and Wolf 1980a,b) and calmodulin (Enyedi 

et al. 1980; Muallem and Karlish 1980; Rega and Garrahan 1980) accelerate 

the EP-formation. The halftime for Ca 2 + - induced EP-formation was 30-40 

seconds at 0°C in a Ca 2 + -EGTA buffer (Enyedi et al. 1980). M g 2 + decreases 

this value to about 7-10 seconds. Both M g 2 + and calmodulin diminish the 

halftime for Ca 2 + - induced EP-formation to about 4 seconds. 

- The phosphorylated intermediate is acid stable (Rega and Garrahan 1975) 

and the phosphate bond formed is hydroxalamine sensitive (Katz and Blostein 

1975; Rega and Garrahan 1975). 

Dephosphorylation occurs predominantly under conditions which cause a rapid de­

cay of the phosphorylated intermediate, i.e. in the presence of high ATP (above 100 

/xmol/l) together with M g 2 + . Luterbacher and Schatzmann (1983) and Schatzmann 

et al. (1986) have shown that the phosphorylated intermediate decreased slowly 

when the phosphorylation medium contained only C a 2 + and also L a 3 + had been 

added before dephosphorylation was initiated by 0.5 mmol/1 ATP and 1 mmol/1 

M g 2 + . If 1 mmol/1 M g 2 + was present in the phosphorylation medium, the phospho­

rylated intermediate rapidly decayed to a very low level. They concluded tha t L a 3 + 

interrupts the conformational change of E j P to E2P. This conclusion is confirmed 

by the following experimental fact: In the presence of C a 2 + or L a 3 + (Ei-s tate) the 

proteolytic digestion of the 80 kDa limit-type fragment m situ proceeds rapidly, 

while EGTA and vanadate (E2-state) protect the C a 2 + pump against proteolytic 
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Figure 2. Effects of La3+ and Mg2+ on the steady state level of the phosphorylated 
intermediate (EP) in sarcoplasmic reticulum membrane vesicles of rabbit heart muscle 
(SR), "light" membrane vesicles fraction of human platelets (Platelet) and red cell inside-
out membrane vesicles (RBC). Phosphorylation was performed at 4°C for 30 min in media 
containing 0.2 /imol/1 ATP (including 732P-ATP), 50 /imol/1 CaCl2, or 50 /xmol/1 LaCl3, 
or 1 mmol/1 MgCk. Membrane protein concentrations: SR, 0.1 mg/ml; Platelet, 0.4 
mg/ml; RBC, 0.8 mg/ml. For explanation see text. (B. Sarkadi, A. Enyedi personal 
communication). 

degradation (Sarkadi et al. 1986b,c, 1987). In the presence of these latter ligands 

a retardation of proteolytic destruction is also obtained by using non-specific pro­

teases such as pronase. A similar result was obtained with the purified red cell 

C a 2 + p u m p (Benaim et al. 1986). 

In the isolated human thrombocyte membranes and in the sarcoplasmic retic­

u lum membranes of rabit heart muscle the rate of phosphorylation is substantially 

higher than the rate of dephosphorylation in the presence of La 3 + and M g 2 + and 

in the absence of L a 3 + and M g 2 + (Fig. 2). In contrast to this, in erythrocyte 

membranes the rate of phosphorylation is much lower than the rate of dephospho­

rylation in the absence of L a 3 + and M g 2 + but vice versa in the presence of L a 3 + 

and M g 2 + (Fig. 2). 

I I I - D . 2 . F u n c t i o n s n o t l i m i t e d to C a 2 + t ranspor t 

T h e phosphorylation/dephosphorylation reactions, e.g. the formation of the phos­
phorylated intermediate, are the means of C a 2 + t ransport function of the enzyme. 
The p u m p maintains a t ransmembrane C a 2 + gradient of approx. 10,000 at a per­
meability of approx. 1 /zmol C a 2 + / 1 cells/h in human red cells at 37°C (Palek et 
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al. 1976; see Schatzmann 1982). However, the low permeability of the erythro­

cyte membranes to C a 2 + implies tha t only less than 1% of the ATP production is 

required for C a 2 + t ransport in intact human red cells (Maretzki et al. 1980). It 

has been supposed tha t the human red cell (Ca2 +- |- Mg 2 + ) -ATPase has functions 

which are not limited to C a 2 + t ransport (Quist and Roufogalis 1975; Sarkadi et 

al. 1977, 1982; Maretzki et al. 1980, 1981, 1982; Szasz et al. 1981; Reimann et 

al. 1981; Al-Jobore et al. 1981). It is evident from the experiments on human red 

cells showing: 

- a steady s ta te of glycolysis in the presence of membranes only (Maretzki et al. 

1977, 1981); 

- there are two sites for ATP of the ( C a 2 + + Mg2 +)-ATPase, the one site has a 

high affinity with a Km of 2-40/tmol/l, and the other site has the low affinity 

with a Km of 100-750 /imol/1 (Richards et al. 1978; Rapoport et al. 1979; 

Maretzki et al. 1980, 1981, 1982); 

- a bulk of A T P consumption of the membrane in intact cells is due to an ATPase 

with low affinity for M g 2 + - A T P (Maretzki et al. 1980); 

- the operation of the red cell C a 2 + pump m vivo to a small fraction of its 

capacity. The maximum rate of C a 2 + efflux in intact Ca2 +- loaded red cells is 

approx. 85/imol/l cells/min at 37°C, pH 7.4 (Sarkadi et al. 1977); 

- phosphatase activity of the C a 2 + pump as evident from the p-nitrophenyl 

phosphate cleavage (Pouchan et al. 1969; Garrahan et al. 1970; Rega et al. 

1973; see Sarkadi 1980; Caride et al. 1982, 1989; Verma and Penniston 1984; 

Rossi et al. 1986). 

This means tha t these different activities are not caused by different enzyme en­

tities. However, it was shown that protein kinases and phosphatases operating 

actively at the inner surface in the presence of C a 2 + and M g J + , are candidates for 

imita t ing the Ca 2 + -ATPase activity (see Szász et al. 1981). 

I I I - D . 3 . A p a t t e r n for t h e funct ional classif ication of C a 2 + p u m p s in situ 

A synopsis of some selected properties and their relations between these properties 

of the "erythrocyte type" and the "sarcoplasmic reticulum type" C a 2 + pumps in 

situ are shown in Tab. 1. ATPases may be related to the erythrocyte plasma 

membrane ( C a 2 + + Mg 2 + ) -ATPase on account of a calmodulin-dependent C a 2 + -

A T P a s e / C a 2 + t ranspor t and a phosphorylated intermediate or purified enzyme of 

140 kDa (Foldes-Papp 1985; Minami and Penniston 1987) are those in the plasma 

membranes of 

- intestinal epithelium (De Jonge et al. 1981; Nellans and Popovitch 1981), 

- kidney (De Smedt et al. 1981, 1984), 

- heart muscle (Caroni and Carafoli 1981), 

- brain (Hakim et al. 1982; Papazian et al. 1984), 
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Table 1. Synopsis of selected properties of the "erythrocyte type" and the "sarcoplasmic 
reticulum type" (Ca2+-f- Mg2+)-ATPase m situ. 0: not applicable. (Reproduced from 
Fôldes-Papp 1985). 

Properties 

Molecular weight (kDa) 
Final phosphorylated, 

proteolytic products (kDa) 
Smallest Ca2+-transporting 

unit (kDa) 
Oxalate effect on Ca 2 + -

transporting activity 
Calmodulin effect on Ca2 +-

transporting activity 
Calmodulin-dependent 

built-in-inhibitor of Ca2 +-
transporting activity (kDa) 

Effect of La3+ on steady-
state EP-concentration 

Effect of Mg2+ on steady-
state EP-concentration 

Ratio of EP-phosphorylation 
to EP-dephosphorylation rates 
in the presence of 
r-2+ 
Ca 2 ++Mg 2 + 
C a 2 + + La3+ 

"Erythrocyte type" 

140 

80/76 

80/76 

0 
2-3 times 
increase 

10 

+ (T) 

í ( t ) 

< 1 
< 1 
> 1 

"Sarcoplasmic 
reticulum type" 

110 

55,35 

55 

+(T) 

0 

0 

0(1?) 

+ (i) 

> 1 
< 1 
> 1 

- skeletal muscle (Michalak et al. 1984), 

- smooth muscle (De Schutter et al. 1984). 
Recently, erythrocyte plasma membrane C a 2 + pump epitopes were found in ra t kid­
ney distal tubules and human as well as rat placentas (Borke et al. 1989a,b). In rat 
liver plasma membrane preparations (Lotersztajn et al. 1981; Chan and Junger 
1983; Lin and Fain 1984; Bachs et al. 1985) the C a 2 + , pump has a molecular 
weight of approx. 105 kDa and is insensitive to calmodulin activation. It might be 
a partially proteolysed product, or it may contain an abnormal calmodulin bind­
ing domain. The plasma membrane- and the intracellular membrane-associated 
platelet Ca 2 + -ATPases have been further characterized by biochemical methods 
(Enouf et al. 1987, 1988, 1989). 

I I I -E . A p r o b l e m t o M e 2 + - A T P subs tra te 

Studies with the isolated and purified human erythrocyte Ca 2 + -ATPase demon­

strated tha t at low A T P (1/zmol/l) and C a 2 + (0.6/imol/l) concentrations the ATP-



18 Fôldes-Papp 

ase activity was inhibited by Mg2+ from 5/imol/l up to 1 mmol/1, whereas Mg2+ 

concentrations up to 5/imol/l increased the ATPase activity (Graf and Penniston 
1981) The calculated concentrations of Ca2+-ATP strongly decreased or ceased 
altogether from the point of 5/imol/l In a control experiment at 6 mmol/1 ATP 
and 10/tmol/l Ca 2 + and Mg2+ concentrations up to 20 mmol/1 did not reveal any 
inhibitory effect per se Under these conditions, Ca2+-ATP was present in satu­
rating concentrations In another experiment, the increase in the ATP hydrolysis 
was proportional to Ca2+-ATP concentration and it was in inverse relation to free 
ATP The experimental findings were interpreted as follows Mg2+ binds to a spe­
cial Mg2+ site on the enzyme, thereby activating the Ca2+-ATPase, and at low 
ATP concentrations Mg2+ by complexing with ATP removes Ca2+-ATP, which is 
the substrate for the Ca2+-ATPase 

In contrast, revaluation of the energy donor specificity of the Ca2 + pump with 
respect to the in situ transport enzyme in red cell inside-out membrane vesicles led 
to the opposite conclusion (Sarkadi et al 1981) By repeating the experiments of 
Penniston and co-workers (Penniston et al 1980, Graf and Penniston 1981) with 
the red cell Ca 2 + pump tn situ instead of the isolated and purified human erythro­
cyte Ca2 + pump, the Ca2 + transport rate increased at higher Mg2+ concentrations 
(Sarkadi et al 1981) The maximum Ca2 + transport rate was observed with total 
Mg2 + concentrations between 200/imol/l and 500/imol/l The suggestion was that 
Ca2+-ATP is not the energy-donor substrate of the red cell Ca2"1 pump m situ 
However, the experiments were done in the presence of EGTA It is well established 
that EGTA shifts the Ca2 + affinity of the Ca2 + pump to a high value (KCa2+=0 5-
1 0/imol/l, Sarkadi et al 1979) The implications of this effect are not yet known 
It was assumed that the Ca2+-EGTA complex is recognized by the enzyme at a site 
which is different from the Ca2 + site for Ca2 + alone Acting on the Ca2+-EGTA 
binding site and on the Ca2 + site for Ca2 + alone are necessary for the Ca 2 + trans­
port (Sarkadi et al 1979) Using EGTA free buffers it was demonstrated that the 
ATP-dependent Ca2 + uptake in red cell inside-out membrane vesicles is stimulated 
by increasing Mg2+-ATP concentration up to 1 mmol/1 (total Mg2+) (Enyedi et 
al 1982a,b) The Mg2+-ATP dependence in red cell inside-out membrane vesicles 
was accompanied by a strong decrease of Ca2+-ATP concentration From these 
findings it was concluded that the true, physiological substrate of the red cell Ca2 + 

pump is Mg2+-ATP 

Mg2+-ATP, the energy-donor substrate as suggested by Wolf and co-workers 
(Wolf 1972, Wolf et al 1977), become controversial The experiments of Schatz­
mann (1977) were in favour of free ATP Nevertheless, the Mg2+-ATP dependence 
of the Ca2 + pump in situ provided evidence for the predominant role of Mg2+-
ATP instead of free ATP or Ca2+-ATP It is convenient to regard the red cell Ca2 + 

pump as an enzyme having a relative specificity for Me2+-ATP Furthermore, the 
purified erythrocyte (Ca 2 + + Mg2+)-ATPase shows drastic conformational changes 
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compared with the enzyme in situ, which are also indicated by M e 2 + - A T P sub­
strate specificity. G T P , ITP, C T P and U T P could be substituted for ATP (Lee 
and Shin 1969; Olson and Cazort 1969). However, in red cell inside-out membrane 
vesicles the C a 2 + pump has a stronger specificity for ATP (Sarkadi et al. 1980a). 
The experiments on membrane fragments also confirmed these observations (Cha 
et al. 1971). 

Experiments were designed to characterize the metal dependence of the C a 2 + 

pump, with emphasis on the understanding of the mechanisms involved. In red 
cell inside-out membrane vesicles M n 2 + , C o 2 + , N i 2 + , Fe 2 + activated the ATP-
dependent C a 2 + t ransport as a result of forming Me2 +-ATP-complexes (Sarkadi 
et al. 1981; Enyedi et al. 1982b). Concentrations of these divalent metal ions 
higher than approx. 0.5 mmol/1 strongly inhibited C a 2 + transport (Enyedi et al. 
1982b). These findings were supported by experiments with the phosphorylation 
as well as the dephosphorylation of the C a 2 + pump. At concentrations of approx. 
0.5 mmol/1 , M n 2 + and N i 2 + decreased the EP-formation, whereas C o 2 + and Fe 2 + 

inhibited the dephosphorylation (Enyedi et al. 1982b). In the presence of 0.2 
mmol/1 M n 2 + , the Kca2+ increased from about 30 /imol/1 to about 60 /zmol/1. 
C o 2 + , N i 2 + , F e 2 + , M g 2 + did not reduce the C a 2 + affinity of the C a 2 + pump in situ 

(Enyedi et al. 1982b). 

I V . O x i d a t i v e C h a n g e s 

It appears to be a general property of (Ca2 +- | - Mg2 +)-ATPases that an imbal­
ance between reactive oxygen species can be assumed to explain a broad range of 
phenomena relating to these enzymes. 

Reversible and irreversible components of inhibition 

Thiol- and lipid-dependent mechanisms have been referred to as components which 

cause inhibition of the erythrocyte Ca 2 + -ATPase by activated oxygen species (Heb-

bel et al. 1986; Mankad et al. 1986; Moore et al. 1986). The general finding tha t 

Ca 2 + -ATPases are inhibited by thiol-reactive agents (Richards et al. 1977; Schatz­

mann and Biirgin 1978; Sarkadi et al. 1980b; Scutari et al. 1980) favours the view 

concerning the existence of a reversible component relating to the inhibition of the 

C a 2 + p u m p and reflecting thiol oxidation. Hebbel et al. (1986) observed a dispar­

ity among the effects of activated oxygen species on the erythrocyte Ca 2 + -ATPase . 

The formation of oxidized glutathione and the oxidation of other thiols by diamide 

resulted in a reversible decay of the activity of the erythrocyte Ca 2 + -ATPase . If 

the decrease of GSH concentration was accompanied by reactions of oxygen rad­

icals, an irreversible component of the inhibition was observed together with a 

reversible one. The dependences on concentration of oxidants of the reversible and 
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irreversible components produced on inhibition due to the reaction of oxygen rad­
icals were not measured. Thiol oxidation by PCMB (p-chloro-mercuribenzoate) 
inhibited the Ca2 +-ATPase without altering the GSH level. The restoration of 
Ca2 +-ATPase was not GSH-mediated, although GSH was able to break the PCMB 
metallo-thiol bond. Restoration was obtained by subsequent incubation with DTT 
(1,4-dithiothreitol). Hebbelet al. (1986) concluded that a portion of the irreversible 
component relating to the inhibition of the erythrocyte Ca2+-ATPase reflects oxi­
dation of thiols which are inaccessible for reduction by GSH. Indeed, approx. 20% 
of the erythrocyte membrane sulfhydryl groups are "non-reacting" groups indicated 
by the lipid soluble reagents diamide, 4,4-dithio-dipyridine and N-ethyl-maleimide 
and the hydrophilic anionic reagent tetrathionate (Haest et al. 1981). The "non-
reacting" sulfhydryl groups are mainly located in the intrinsic proteins (75% in 
bands 3 and 4.5). As the molecular weight and the solubilization properties of the 
( C a 2 + + Mg2+)-ATPase are similar to those of Band 3 polypeptides (Szasz et al. 
1978; Niggli et al. 1981b; Graf et al. 1982; Schatzmann 1982), the portion of the 
irreversible component of inhibition which fails to show any GSH-mediated C a 2 + -
ATPase recovery could involve "non-reacting" sulfhydryl groups of the ( C a 2 + + 
Mg2+)-ATPase located in the hydrophobic core of the red cell membrane. Incu­
bation of normal erythrocytes with 1 mmol/1 ť-butyl hydroperoxide for 30 min at 
37°C produced irreversible inhibition of the Ca2+-ATPase (Hebbel et al. 1986). 
The irreversibility of the inhibition was demonstrated by using 10 jnmol/1 DTT or 
10 mmol/1 glucose for subsequent treatment. When erythrocytes were incubated 
with PCMB prior to exposure to ť-butyl hydroperoxide and subsequently with DTT 
or diamide to reverse thiol oxidation, no differences were found in irreversibility of 
oxidatively inactivated enzyme compared with exposure to ť-butyl hydroperoxide 
alone. The conclusion was that lipid peroxidation acts through a non-thiol mech­
anism. An effect of malonic dialdehyde on the Ca2+-ATPase activity could not be 
observed (Hebbel et al. 1986; Snider and Moore 1988). However, ť-butyl hydroper­
oxide does not only cause lipid peroxidation. Lipid peroxidation and hemoglobin 
degradation are two extremes of oxidative damage to erythrocytes treated with 
ť-butyl hydroperoxide (Trotta et al. 1982). ť-Butyl hydroperoxide induces oxida­
tion of erythrocyte membrane proteins, produces leaks which are probably due to 
irreversible protein alteration (Deuticke et al. 1986, 1987a,b), and causes flip sites 
for the transbilayer reorientation of amphiphatic lipids (Deuticke and Heller 1986; 
Deuticke et al. 1986). The effects of ť-butyl hydroperoxide require the formation 
by hemoglobin of ť-butoxyl radicals (Trotta et al. 1982) or at least an additional 
reaction participant such as hemoglobin, hemin, or ferrous chloride with ADP 
(Leclerc et al. 1988; Moore et al. 1990). The mechanisms of organic hydroperox­
ide decomposition and the role of solvents in the reactions are not fully understood 
(Foldes-Papp and Maretzki 1982, 1984; Foldes-Papp 1983, 1990, Fôldes-Papp et al. 
1981, 1990, 1991; Gerber et al. 1989). There are serious doubts about the identity 
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of alkoxyl radicals in solution. Alkoxyl radicals have so far escaped direct ESR 
identification in solution. More recently, studies of the photochemically induced 
decomposition of ť-butyl hydroperoxide in DMSO and water have shown that the 
ť-butoxyl free radical is involved in the primary process as indicated by direct ESR 
technique (Foldes-Papp 1989, 1990; Fôldes-Papp et al. 1990, 1991). 

Oxidative membrane damage in erythrocytes was shown to proceed after re­
moval of exogenous organic peroxides (Deuticke and Heller 1986; Deuticke et al. 
1987a,b). More recently, it was shown that the high-affinity Ca2 +-ATPase activity 
in rat liver plasma membrane is inhibited in vitro by 4-hydroxynonenal, a major 
product of lipid peroxidation, which interacts with sulfhydryl groups (Parola et 
al. 1990). In view of these observations, oxidative alterations of (Ca2 +-|- Mg 2 + )-
ATPases have received only scant attention. An analysis of regions in the mem­
brane which couple the attack of radicals to structural and functional parts of 
( C a 2 + + Mg2+)-ATPases may clarify some of the physiological processes, whereby 
toxic chemicals initiate alterations of ( C a 2 + + Mg2+)-ATPases. 

Oxidative and reductive pathways 

Experimental findings suggest that the activity of ( C a 2 + + Mg2+)-ATPases is mod­
ulated by alterations in the balance between oxidative and reductive pathways. 
Moreover, one can assume that this modulation is subject of a complex regulation. 
A decrease in the calmodulin stimulation of erythrocyte (Ca2+-(- Mg2+)-ATPase 
has been observed during red cell aging (Luthra and Kim 1980; Ekholm et al. 
1981; Leclerc et al. 1987) as well as in haemolytic anemias such as sickle cell dis­
ease (Gopinath and Vincenzi 1979; Dixon and Winslow 1981; Leclerc et al. 1987). 
The decreased response to calmodulin stimulation in sickle cell disease does not 
come from the calmodulin activity failure (Dixon and Winslow 1981; Leclerc et al. 
1987). Oxidative damage (Hochstein and Jain 1981; Hebbel et al. 1982; Rank et 
al. 1985; Leclerc et al. 1987) and perhaps selective endogenous proteolysis repre­
sent the major factors in the destabilization of the membrane, and are responsible 
for alterations of the ( C a 2 + + Mg2+)-ATPase in sickle cell disease. A consequence 
of cellular changes induced by the sickle anemic conditions may be the increased 
high-affinity C a 2 + binding by the red cell membrane (Litosch and Lee 1980). Dif­
ferences in functional properties of the erythrocyte membrane induced by heating 
canine blood to 57 °C (thermal trauma) have been attributed to changes in mem­
brane ATPase activity levels rather than to changes in intraerythrocytic C a 2 + levels 
(Hilton 1986). Studies with glucose-6-phosphate-dehydrogenase-deficient red cells 
indicated the dependence of the ( C a 2 + + Mg2+)-ATPase activity on the cell redox 
status (Shalev et al. 1985). Monitoring of the hypertension disease is possible by 
estimation of the red cell Ca2 +-ATPase activity (Syurin et al. 1990). 
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Figure 3. A glass ampulla containing a known amount of KO2 was introduced into the 
mixing chamber and crashed. The KO2 was mixed with water, distributed finely by a 
nozzle and projected with high velocity on a metallic specially coated roll rotating in 
liquid nitrogen; The duration from crushing to freezing never exceeded 0.5 seconds. The 
frozen debris was collected and analysed at 77 K in the ESR spectrometer (model E4, 
operating at the X-band; Varian, Palo Alto, CA, USA). By using different amounts of 
KO2 (0.1-10 mg) and by varying the distances of the control and reaction position from 
mixing chamber, a desired starting concentration of 0"2 can be adjusted. OH radicals 
generated in secondary reactions are amenable by that procedure, too. 

Direct methods for investigation of radical reactions 

A great deal of methods by which oxygen radicals were determined have been based 
upon electron transfer and hydrogen abstraction properties of these species. The 
disadvantages of indirect methods used for free radical detection (Fôldes-Papp et 
al. 1989a) are: 

- dependence on initiation, competition or inhibition in indicator systems; 
- secondary reactions in indicator systems influence the detection of radicals; 
- low specificity of indicator systems. 

T h e disadvantages are avoided by direct methods for investigations of radicals. 
To clear up stabilization phenomena of 0"2 in aqueous media (Fôldes-Papp 1986), 
0"2 was detected by rapid freezing to 77K and ESR. An a t tempt was made to 
find out the conditions which considerably contribute to the well defined accurate, 
reproducible handling of 0"2 and OH in aqueous system. The technique developed 
is schematically shown in Fig. 3. The features of the technique (Fôldes-Papp et al. 
1988a) are: 

- t ransport of 0~2 in an aqueous medium, 
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- proportional sharing of the solution into the reaction and control position, 

- parallel and synchronous determination of 0"2 by rapid freezing to 77K and 

ESR. 

It is commonly accepted that the 0~2 radical in aqueous media has a life-time in 

the range of milliseconds. ESR studies in a K 0 2 / H 2 0 / i r o n ion system revealed a 

stabilization of a part of the initially added 0~2 lasting up to hours at 300K (Fôldes-

Papp et al. 1988a,b,c, 1989a,b; Fôldes-Papp 1990), to our knowledge, this is the 

first report of this kind. In these ESR studies, the nature of this effect was in­

vestigated. The iron-mediated long-term stabilization of 0"2 in an aqueous system 

is based on the existence of an oxidic iron hydrate phase with a partially mixed-

valence character. It was also shown to be present in aqueous systems with low 

iron ion content (1 /imol/1). Besides physical adsorption phenomena favoured by 

the charge of 0~2 a more mechanistic interpretation should also consider electronic 

interactions (Fôldes-Papp et al. 1989c). Species like [ F e + + + ( H 2 0 ) j ; O H - ] , 0 2~ 

may exist. On this basis the conclusion is drawn that the reactivity and selectiv­

ity of 0~2 is modified by specific interaction (adsorption) and binding interaction 

(electron exchange) on other chemical structures (Fôldes-Papp 1990). The differ­

entiat ion of the reaction behaviour, e.g. the possibility of 0~2 to find new routes 

of reactions, is expected to increase in biological systems. Therefore, the special 

biological s tructure is very important in the modification of reactivity and selec­

tivity of 0~2. In further studies it must be investigated whether the iron mediated 

long-term stabilization of 0"2 in aqueous systems has effects on (Ca 2 + - f M g 2 + ) -

ATPases. 0"2 adsorbed on an oxidic iron hydrate phase in aqueous systems might 

function as a strong oxidant similar to that species which has been suggested to be 

a complex between oxygen and different valence states of iron in the initiation of 

lipid peroxidation by F e 2 + and hydrogen peroxide (see Minotti and Aust 1987). 

V . C o n c l u s i o n s 

The three-dimensional structure of animal and human plasma membrane (Ca2+-f-

Mg 2 + ) -ATPases is not yet known. The progress in methodology and new as­

pects of (Ca2 +- | - Mg 2 + ) -ATPase research will help us to understand tha t the two-

dimensional s tructure in near future. Nevertheless, biochemical and immunological 

methods as well as studies using radical reactions have been valuable tools for the 

elucidation of the molecular structure. As illustrated in the review, this was the 

way leading to detailed understanding in recent years. 
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