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In a previous paper (Wierzchaczewski 1988) a model of (two-component) 
bioreactor volume regulation has been considered in which the active solute 
(nonelectrolyte) flux was assumed to be concentration independent, whereas the 
passive transport across the membrane was described by the Kedem-Katchalsky 
equations. The stability of the system has been analysed. It has been shown that 
the active solute flux may control both the bioreactor volume and the solute 
concentration, as well as the hydrostatic pressure inside the bioreactor. The 
steady state of the system was shown to be independent of the elasticity coef­
ficient. In the present paper we make a more realistic assumption that the active 
solute flux is a (nonlinear) function of its concentrations q and c0 inside and 
outside the bioreactor, respectively. We also take into account a presence of an 
osmoticaliy active non-permeating species. Thus, in the background equations 
of the model we make the following changes: 

i) we replace Eq. (6) of (Wierzchaczewski 1988) by 

Jv = LP [{p„ - p) -(an0- ni) ~{n0-n,)] (1) 

where n0 and n* are the external and internal osmotic pressure of the non-
permeating component, respectively (the reflection coefficient of the nonperme­
able component being equal to 1). Both quantities are assumed to be given by 
the van't Hoff relation. All the remaining symbols preserve their previous 
meaning (Wierzchaczewski 1988) 

ii) the equations are supplemented by the following one describing the 
active solute flux _/5 (Heinz 1978): 

j s = Jm[c0(K' + c0)-] - q ( K ' + (-,)-'] (2) 
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where Jm is the maximum active flux and K' is the apparent Michaelis 
constant. 
The two changes naturally cause a corresponding change in the equations 
describing the dynamics of the system considered. The augmented system of 
equations is investigated in a way completely analogous to that presented by 
Wierzchaczewski (1988), i.e. with the employment of classical stability analysis 
(Iooss and Joseph 1980). 
If 

K'/V„ / 0 

and 

the dynamic system has two steady states, one in which the active solute flux f 
is different from zero, and another in which the flux vanishes. Naturally, the 
second possibility corresponds to thermodynamic equilibrium. 
Assuming that (/s)0 # 0 (i.e. that the active flux is different from zero in the 
steady state), we get for the steady state: 

= [(a,-na2)JmK + A-,K(K + l)][na2JmK - A,(K + 1)] ' u ' 

where: 

K = K'Ao 

and where the symbol ( )„ refers to the steady state value. All the remaining 
symbols have their original meaning (Wierzchaczewski 1988). 
To get an analytic expression for the corresponding steady state coordinate Xa, 
we make now the following assumption: 

b/£'« 1 (4) 

which is always true for any realistic value of the coefficients. 
Making use of (4), we may write: 

Z0 = (C ; /O 0 = a, exp [{blfi) (1 - XJ] (5) 
«fl,[l +(b/£')(\ -XJ] 

where 

a, = C*(0)/C ^o=(P-Jpo)0 

and where C* and C* are the internal and the external concentration of the 
non-permeating component, respectively, and C^(0) is the internal concentra­
tion of the component at turgor pressure P equal to zero (P^pt — p0, /;, and p0 

being the internal and the external pressure, respectively). 
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Under approximation (5) we get, with a relative error much smaller than 1 %, 
the following expression for steady state coordinate X0: 

X0=l-b~l[k2(\ - Y0)-a2JmK(\- 7 0 ) ( K + 1 ) - | ( K + FJ"1 (6) 

+ M l - a l ) ] [ l + ^ , ( £ T ' r 1 

where: 

k, = RTC'jpM 

R being the gas constant, T the absolute temperature and p3t the atmospheric 
pressure. 
Thus, under the assumption that (j\)0 ^ 0, the dynamic system has only one 
steady state {X0, Y0) and the active transport controls the volume of the bioreac­
tor, as in the case considered by Wierzchaczewski (1988), where the active flux 
was set constant and the nonpermeable solute was absent. However, in the 
present model the hydrostatic pressure inside the bioreactor and the volume are 
controlled also by the non-permeating component as well as by the elasticity 
coefficient. 
If the active solute flux is zero in the steady state, or the active transport is absent 
(i.e., Jm = 0), we obtain from the dynamic equations of the model the steady 
state given by: 

Yo = 1 (7) 
X0= 1 -Zr'[Ar,(l - f l , ) ] [ l + M , / < T 

From. Eqs. (7) it is seen that X0 need not be 1, and that the quantity depends 
in this special case (thermodynamic equilibrium) on the parameters a, and 
b = pJpäXm as well as on the elasticity coefficient. In the previous description 
(Wierzchaczewski 1988) switching off the active transport would result in 
achieving a steady state in which Xa = Ya = \. In the present model the same is 
obtained when in the absence of active transport parameter a, is set 1 (i. e when 
the internal osmotic pressure of the nonpermeable component at zero turgor 
pressure is equal to the external osmotic pressure of the component). It is 
important to note that if Jm = 0, the steady state given by Eqs. (7) becomes the 
only one in the system. 
We will now restrict our considerations to the first, more interesting case when 
the active flux in the steady state of the system is different from zero. For 
0 < q < 2c0, we obtain from Eq. (3) the range of the maximum active flux (Jl

m, J2
m). 

We do not present the respective equations here, restricting ourselves to note 
that the range itself does not depend on either the elasticity coefficient or the 
hydraulic permeability LP. 

Next, in a way presented by Wierzchaczewski (1988), we determine the 
threshold value of the maximum active solute flux /„ , the quantity being a 
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Fig. 1. The dependence of the threshold value of maximum active flux von Y0 = (cjca)0 for e' = 10, 
Lp = 10' l 2 m'(Ns)-', a = 0.5, K = 4.0, k} = 0.075, c0 = 0.01 kmol m \ C'*, = 0.01 kmol 
m\v. = 0.1117m3 kmol"1. 

function of both Z 0 and F0: 

•4h = ( K , ( i -
* {/2tf2

Ml + [fl3 

where 

Zo)-ď-k^k,Z0 

-na2(\+ Y0)]u2}-
+ £'(kl-kJ)} 
{kxZ0 + e'Y] 

(8) 

«, = K(1 - r0)(l + K ) - ' ( K + Yoy\u2 = K(K+ Y0)
 2 

The dynamic system is stable for Jm > f* and has a stable node solution (there 
are no damped oscillations in the system). From Eq. (8) it is seen that J^ depends 
on the elasticity coefficient, the (dimensionless) constant K as well as on the 
transport parameters of the membrane. It should be stressed that j£ depends 
also on the quantity Z0 defined above, i. e. the stability area of the dynamic 
system is strongly controlled by the nonpermeable species osmotic pressure 
ratio. In accordance with the physiological situation, for the assumed values of 
the membrane transport parameters the system is stable only for a, > 1. To 
illustrate the properties of the model in a more quantitative way, a plot of the 
threshold value of the maximum active flux f^ as a function of the parameter 
Y0 for two different values of parameter a, (K = 4, ef = 10) is shown in Fig. 1. 
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Fig. 2. The dependences of X0 = (pjp0)0 and Y0 = (cjc0)0 on the maximum active solute flux J, 
Same parameters as in Fig. 1. 

Finally, in Fig. 2 we plot the dependence of both Y0 and X0 on the maximum 
active flux Jm (for two different values of the parameter a,). It should be added 
that if parameter a, is set 1, the system is stable only for Y0> 1, X0 > 1. This 
means that in this special case a stationary state will be achieved only when both 
the internal pressure and the internal permeable solute concentrations are not 
smaller than their respective external values. From Fig. 2 it is seen how the 
internal hydrostatic pressure and the internal solute concentration as well as the 
bioreactor volume are controlled by the active flux. Fig. 2 shows also the way 
in which the nonpermeating species concentration ratio controls the hydrostatic 
pressure and the volume. 

It is easily seen that the present model has many properties of a "double 
Donnan" system (Macknight and Leaf 1978) where the steady state is main­
tained by metabolism in such a way that the active transport-dependent con­
centration gradient gives a contribution to the total osmotic pressure (see Eq. 
(1)) to counterbalance the intracellular osmotic pressure arising from the 
presence of nonpermeable components. The role played in real cells by (sodium) 
ions has been ascribed here to the permeating nonelectrolyte. 
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