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Heart Muscle: Mathematical Modelling
of the Mechanical Activity and Modelling
of Mechanochemical Uncoupling
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Abstract. A mechanical model of heart muscle is proposed which includes
rheological equations and equations for Ca-troponin interaction, for the depen-
dences of the number of myosin cross-bridges on the length of sarcomere and
on the speed of motion. The main assumption of the model is the dependence
of the troponin affinity to calcium ions on the number of myosin cross-bridges
attached. The model successfully imitates isometric and isotonic contractions,
the “length-force™ relationships, load-dependent relaxation, and the group of
mechanical phenomena known as mechanochemical uncoupling.
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Introduction

Several models are available at present which describe different aspects of the
mechanical activity of skeletal and cardiac muscles (Fung 1970; Morel 1985;
Simmons and Jewell 1973). Depending on the specific objective, these models
describe the time course of single isometric and isotonic contractions. the
dependence of the speed of shortening on the load. the relation between length
and force, etc.

A common disadvantage of all these models is that they reproduce but a
limited number of phenomena in the mechanical activity of muscle. Thus, while
simulating successfully the dynamics of the isometric contractions, the models
fail to describe isotonic contractions or responses to rapid changes in the length
or load.

The models based on the mechanochemical cycle of myosin cross-bridges
are very complex and require application of partial differential equations (Hill
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1975: Huxley 1957 Eisenberg and Hill 1978). Moreover, the dependences of the
cross-bridge attachment and detachment rate constants on the mechanical
distortion do not follow from experiment, but are usually fitted in such models
(Huxley and Simmons 1971: Julian et al. 1974).

Many important experimental data concerning cardiac muscle mechanics
go beyond the scope of these models, e.g.:

1. The models do not simulate the process of muscle relaxation and. in
particular. the dependence of the speed of isotonic relaxation on the length and
load (Strauer 1973) and the so-called ~load-dependent™ relaxation (Brutsaert et
al. 1980).

2. The models do not simulate the events which come under a general term
“mechanochemical uncoupling”™ (Kaufmann et al. 1972). These include the
inactivating effect of short-term muscle deformations. earlier relaxation of the
muscle after preliminary shortening, differences in the “length-force™ relation-
ship slopes under isometric and isotonic conditions.

3. The models fail to simulate the experimentally established relations
between the concentration of free calcium. the kinetics of the “calcium-troponin
complex™ and the mechanical activity of the muscle under isometric and isotonic
conditions (Allen et al. 1983: Allen and Blinks 1978; Moss 1980).

The above list might be continued. The reason for developing a new model
is our belief that many phenomena known under their proper names have a
common mechanism at the basis and that many phenomena may be understood
by introducing laws describing the effects of the mechanical conditions on the
time course of activation of the contractile proteins.

The purpose of this report is to present a new and. at the same time.
relatively simple model for the contraction-relaxation cycle of heart muscle,
which would simulate the main mechanical events pertaining to the functioning
of this muscle. In constructing the model. we considered new experimental data,
specifically, those concerning the kinetics of 1onized calcium and of that bound
to troponin (Robertson et al. 1981), and the dependence of the number of
attached cross-bridges on the speed of motion of the sarcomeres (Ferennezi et
al. 1984). Since there i1s no detailed information available about certain mole-
cular processes during muscle relaxation. some assumptions were unavoidable.
The plausibility of the assumptions made was verified by successful modelling
of a wide range of experimental data.

General Structure of the Model

The majority of the contemporary models of muscle contraction comprise three
main parts corresponding to rheological, activation and mechanochemical ev-
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ents (Izakov et al. 1979). In general, we follow this tradition.

The rheological unit accounts for the presence of elastic elements which are
external with respect to the sarcomeres. The muscle is represented by a three-
element model comprising the active contractile element (CE) and two passive
non-linear elastic elements. the parallel (PE) and the serial (SE) ones.

The parallel elastic element (PE) determines the elastic properties of resting
cardiac muscle. The viscoelastic behaviour of a passive muscle 1s not considered,
since, over the dynamic range of interest, it is unlikely to be due to the properties
of the cell; rather. it reflects the characteristics of the myocardium as a com-
posite material consisting of a connective utssue framework filled with ex-
tracellular liquid (Tsaturian et al. 1984).

The force generator is represented by the contractile element. Functionally,
the latter may be assumed to consist of two units representing the activation
process and mechanochemical events. Activation is triggered by the binding of
calcium by troponin. It determines the number and the dynamics of the possible
sites of force generation. The mechanochemical unit of the model simulates the
rules governing the attachment and detachment of the cross-bridges.

In different models. the mechanism of activation has been described with
different degrees of detail (Julian 1969 ; Cannel and Allen 1984; Robertson et al.
1981). Depending on the objective of the study, the concentration of free
calcium has ecither been described as a function of time (Julian, 1969) or
obtained by solving a material balance equation for calcium taking into account
its release from different sources, its uptake by the sarcoplasmic reticulum and
binding with troponin and with some of the buffer systems (Cannel and Allen
1984). Since the precise kinetics of calcium interactions with all these com-
ponents are not known for myocardium, we have chosen a simpler variant: the
dynamics of calcium concentration is assumed to be a known function of time.

In modelling the muscle, a correct description of the behaviour of a mecha-
nochemical system is the most intricate problem. because many aspects in the
molecular behaviour of the myosin cross-bridges remain unclear. In any case.
it is essential “to guess™ the basic rules of motion,

The choice is between two strategies. The first strategy consists in the use
of the data on the biochemical cycle of the actomyosin ATPase and the data on
the mechanochemical states of the attached cross-bridges (Comincioli et al.
1984 Eisenberg et al. 1980). The other strategy is based on the fact that the
behaviour of a mechanochemical system and the equation of motion may be
assumed phenomenologically by describing the relation between the force of
cross-bridges and the probability of their attachment as well as the velocity of
motion. We use the second approach.

The majority of the models. with the exception of that developed by
Panerai (1980) have assumed the activation to be independent of mechanical
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Fig. 2. Dynamics ol the free calcium concentration.

stiffness of the sarcomere at time 7 are equal to A(7).n(r) multiplied by a
constant factor. i.e.

N(1) = p. A1) . n(1). (6)

The velocity of the sarcomere shortening is assumed to be negative /,(1) =
= F(1) < 0. while F(7) > 0 during stretching (relaxation).

The model also uses parameter V.. which is the maximum shortening
velocity in the absence of external load.

Activation

The number of calcium-troponin complexes and their kinetics are the major
regulators of the contractile element force (Descherevsky 1977). Probably. the
mechanisms of many biomechanical processes in muscle, including mechanoch-
emical uncoupling (Tregear and Marston 1979) should be sought in the process
of activation.

The concentration of free calcium 1ons in the reaction zone during the
contraction-relaxation cvele. Ca(r). is assumed to be a function of time. The
time course of function Caf(¢) 1s shown in Fig. 2. The concentration of calcium
is expressed as a molar fraction of the total amount of troponin in the myocyte.

Curve Ca(r) is approximated by the following equation:

(Ca,.[1l —exp(—as)). 1<
Ca(r) = (7)

1(“;1,, 1 —explar)).expl—htt — 1)) . t>1,.
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where Ca,, is the maximum concentration of free Ca; ¢ and b, are the constants
which determine the rise and the decay of the calcium curve: ¢, 1s the time at
which the supply of calcium in the reaction zone is cut off.

Function (7) 1s a convenient form to describe the time-dependence of the
free calcium concentration in myocytes, and is based on the formula proposed
by Panerai (1980) with a small modification.

Strictly speaking, assumption (7) for function Ca(r) is a considerable sim-
plification of the problem. The actual kinetics of free calcium is a result of
complex processes of calcium transport into the cell. its uptake into the sarco-
plasmic reticulum and the exchange of calcium with other Ca-buffer systems
(Robertsonetal. 1981 Bayloret al. 1982; Miledi et al. 1982). 1t is quite probable
that. under specific conditions of muscle functioning. function Ca(r) has ano-
ther shape. Nevertheless, in many cases. the assumption (7) is quite sufficient for
the above function Ca(r). To simplify the model. we have not included the
calcium balance equations. For the purposes of the study though, 1, Ca,, a.. b,
are parameters and, depending on the objective, they may be assigned different
values.

The kinetics of the calcium-troponin complexes is determined by the reac-
tion

Ca** + T, 2 CaT,

Circumstantial evidence obtained from the experiments studying the effects
of mechanical conditions on the electromechanical coupling suggasts that the
length and/or the load may have an effect on this process. Panerai (1980) claims
that ¢,, i.e. the decay rate constant for calcium-troponin complexes. is the
function of the sarcomere length. The theoretical and experimental grounds of
this statement are not clear, however.

Our model is based on the results of the experiments, which demonstrate
that the troponin-calcium binding equilibrium constant (taking into account
either the pure troponin or the whole complex of the regulating proteins in the
thin filament) is by an order of magnitude greater in the presence of S-myosin
subfragments (Hill et al. 1983). More elaborate experiments showed that in the
presence of cross-bridges attached to the thin filament. the Ca-troponin decay
rate constant reduces at least by a factor of 10 in comparison with a system
without myosin (Rosenfeld and Taylor 1985).

The latter experiment implies two conclusions as to the behaviour of
calcium-troponin complexes in intact muscle.

First, the decay of Ca-troponin complexes outside the zone where the thin
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filament which is accessible to “scanning™ for a free cross-bridge. The less the
distance between the thin and the thick filaments, the longer this section. Since
in intact muscle the volume of the sarcomere. remains constant even at changing
length, the distance between the filaments is inversely proportional to the length
of the sarcomere (Goldman et al. 1979). Stated otherwise

n, = n(l), (15)

n, increasing with the increase in length (/)).
In the model, n,(/)) are defined as follows:

0, if W) <0,
n(l) =< Wil). if 0<W()<I1. (16)
1, it W) > 1.

where W (/) is the linear function of /, having the following forms:
W () =g, .1, + g, (17)

where coeflicients g, and g, determine the effect of the length on the probability
that the cross-bridges attach to the actin filament.

Now we proceed to consider function n, = a,(7) in more detail. The experi-
ments studying stiffness of a muscle in constant activation, carried out under
conditions when changes in the sarcomere length can be neglected (the amount
of deformation is 0.5% or less), demonstrate that the number of attached
cross-bridges and, hence, probability n,, depend only on the speed of motion
(15). Itisalso known that. under these conditions, the setting of a constant speed
of motion with the help of an ergometer leads to the establishment of a
steady-state value of stiffness only upon the completion of the transient (Saeki
et al. 1980). These results suggest that for an arbitrary contraction-relaxation
cycle probability n.(r) is determined by the equation:

dns(1)
t

= K_[V()].[1 —n(0)] — K _[V(2)]ni0). (18)

Let us denote probability n, as m{ V') in the steady-state contractile (relaxa-
tion) process at speed ¥ under constant activation during the plateau of the
length-force relationship. It 1s evident that

m¥F)_ Oib) _

G*(V), 19
m(0)  G,(0) : e

where G, (V) 1s the suffness of the sarcomere under the steady-state conditions
at speed V, and G* is the same stiffness normalized to its value in ideal isometry
(¥ ="0).
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Taking into account that m(V) is the solution of equation (18) and
d”;—(” = 0 for a given steady-state speed V', we obtain

t

0=K.(V).[1 —m(W)]— K_(V).m(V).

Subtracting equation (18) from this relation and assuming
g(V) = K (V) + K _(F). we obtain the equation for n,(r) used in the model

dny (1)

= g[V(1)]. (m[V(1)] — ny(1)}. (20)

The available experimental data (Ferennezi et al. 1984) suggest the fo-
llowing dependence of ¢(}) on the speed of motion:

g — §:(V/Va)s V<0
4(V) = { h — 4>

21
. = 0. (21

Stated otherwise, it is assumed for simplicity that at ¥ > 0 (relaxation.
stretching) ¢(V) is constant. For }' < 0 (contraction) ¢(¥) is a linear function
of the speed of shortening. The shape of function g(¥) is shown in Fig. 4.

Thus, probability n = n;n, together with the decay rate constant for cal-
cium-troponin complexes depends directly on the sarcomere length and indirect-
ly, through (20). on the speed of the contractile element.

Average Force of a Cross-Bridge

Under conditions of total activation and length-independence (the length-force
relationship plateau) for a given constant rate of motion, certain steady-state
values of force and stiffness are reached after a short-time transient. The
force-speed relationship is defined, under these conditions, by the known Hill
equation (Hill 1970)

P( ’r,) _ ﬂ]_'i' J L;n:m) (22)

.

{0) a— V| Vm‘u

where P(0) is the force of an isometric contraction. This equation is valid only
for shortening, i.e., when ¥ < 0. Under the same conditions, the relation
between steady-state stiffiness G* and the speed of shortening (V) has the
following form (Ferennezi et al. 1984):

G*{V) =1+ 0.6. VJ'IIV;n'.u‘ (23)

Accounting for equations (20) and (21) the average force of the cross-bridge
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Fig. 4. The Tunction ¢ = ¢(1).

normalized to its force under 1sometric conditions is equal to

Al + Vi)

_ (24)
(@ — V/Vy). (1 +06.V/V,.)

P(V) =

Note that for < 0 P(}) increases with the decreasing speed of shortening.

The case 1s more complicated with the definition of the speed-force and
speed-stifiness relationships for V' = 0. i.e., for the cases where the muscle is
stretched (relaxed), because data concerning this question are scarce and con-
tradictory (Mashima 1984).

In the absence of more exact information, we assume dependences P(1)
and G*(V), as they are shown in Fig. 5 and 6. In the general case, the force of
the cross-bridge is expressed by these dependences:

OO - (s W
P(O).G*(V)

In the model, P(V) and G*(V) are fitted so that for V' > 0 function P(V)
increases monotonically. This allows equation (23) to be solved for speed V.
which is necessary to reduce the entire set of equations used in the model to a
form solvable for the derivatives.

The rate of elongation, V|, for which the force of the contractile element and
its stiffness reduce. is a parameter of the model. ] 1s assumed to be within the
limits of speeds characteristic of the isometric relaxation.
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Fig. 5. The dependence of the cross-bridge force on the speed of motion.
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Fig. 6. The dependence of stilTness on the speed of motion.

It should be emphasized that both the force and the stiffness are greater at
low speeds of elongation than in the absence of motion (i. e.. under the isometric
conditions). this agrees with the data obtained in a number of experiments
(Descherevsky 1977). At high speeds of elongation (higher than V). both the
force and the stiffness are assumed to decrease as V' increases.



232 Katsnelson and lzakoy

P/P max
A"{A‘HHK

1.0
0B

0.6

0.4

0.2

t

i . i M "

01 02 03 04 05 06 07 08

Fig. 7. Relationship between time-courses of activation (A) and of force (£): 4 and P are related
to the respective maximal values (“relative units™).

Isometric and isotonic Conditions
For the mechanical activity of heart muscle under isometric conditions, the
following set of equations may be written:

[, = const

AP Ay onson(l). 050+ S))— Bexpl(h—16)—1]1=0

Ay =¢;.Ca(t).(1 — A)) = Cyy. n (1)) . n,). A,

iy = g(l) [m(0). G*(1,) — n,).

The explicit expressions for P(/)). n, (1)), m(n, .n,), Ca(r), q(/,), G*(/,) have
been given above.

To describe the contraction of a muscle under the isotonic conditions for a
constant load D. the identity /, = const in the earlier set should be replaced by
the relation

D = f.explay(l, = 1)) = 1] + Brlexp ayl, — 1].
Differentiating it with respect to df, we obtain the following equation
a. B, (h—1).expla(l,— 1D + a,. B, . [ exp(ayly) = 0

Both sets of equations are soluble for the derivatives of unknown functions.
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Table 1. Effects of initial lengths on parameters of isometric contractions (model-derived values)

Initial End-systolic

) Internal Sarcomere ; Relaxation
sarcomere sarcomere \ . Time-to-peak .
shortening force tme 15,
length length
2.33 217 0.16 8.68 320 320
2.16 2.03 0.13 6.20 320 225
2.08 1.96 0.12 5.20 310 195
1.99 1.87 0.12 4.16 305 155

Parameters of the Basic Model

The load is expressed in arbitrary units of force [F].

a = =146um"' m(0) = 0.87

B =p=1.[F] g =04um™’
i =65[F] ¢ =06

Vi =43 x 10 " mm/ms S, =0.77 ym
f, =150 ms a =025
Ce. =17 gi. =0017
g, =210t g, =0.26

b, =5%107%s2 g, =0.03

e = I3ms™ vV, =01V,
¢y =13%x10"2ms™!

Results

Isometric Contractions

Fig. 7 shows the results of the numerical modelling of an isometric contraction.
On the whole, the shape of the contraction agrees with the experimental data.
For muscle length L = L, (i.e. for the length corresponding to the maximum
isometric force) the passive-to-active tension ratio is 0.11. Although the total
length of the muscle remains constant during the isometric contraction, the
length of the CE reduces owing to the stretching of the serial elastsic element.
For the model this reduction is to 0.16 um, the initial length of the sarcomere
being 2.33 um (Table 1). Thus, the internal shortening during isometric contrac-
tion is approximately 7%. This figure is in agreement with the experimental
data. Laser diffraction of sarcomeres (Pollack and Krueger 1976) demonstrated
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Fig. 8. Modelling of the time-course of postload 1sotomc contractions. | sometric mode 2. 3,

4 postload at 0.2. 0.4, and 0.8 B, respectively. Force in relative units. time in seconds.
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Fig. 9. Modelling of length changes in a series ol post-load contractions. 1, 2.3, 4 post-load at
0.2. 0.4. 0.6. and 0.8 F,. respectively.
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Fig. 10. The (P F) force - shortening velocity (#) relationship in postload contractions.

that during the isometric contraction of a cardiac muscle the sarcomeres are
shortened by 5—12%.

A comparison of the time courses of force (P) and activation (4) shows that
activation reaches a maximum 80 90 ms earlier than does force. The time
course of isometric relaxation generally coincides with the decay of activation.
Activation. however. decreases faster than does force. Thus, at 300 ms the
activation is 30% of the maximum value. whereas the force is 8§0%. and the
corresponding figures at 500 ms are 7% and 30%. In accordance with the
experimental data (Chapman 1979) the electromechanical delay (i.e. the lag-
time from the moment when calcium begins to enter the cell to the onset of
tension) in the model is 1020 ms.

It should be noted also that the peak of free calcium concentration coin-
cides with the moment when P reaches its maximum value, and near the
contraction peak, the concentration of free calcium is close to zero (in Fig. 7.
these moments are marked with arrows). These results of modelling also agree
with the experimental data (Yue 1987).

Isotonic Contractions

Figs. 8 and 9 show the results of the numerical modelling of isotonic contrac-
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Fig. 11. Modelling of the effect of the mitial length on isometric contractions. 1. 2, 3. 4 — length
of sarcomere 2.33, 2.16. 2.08, and 1.99 um, respectively.

tions at different values of the afterload (0.2: 0.4 and 0.8 £)). The basic observa-
tion is that after shortening the isometric phase of relaxation in afterloading
contractions begins earlier and proceeds faster than relaxation in the isometric
mode. This is the so-called “‘load-dependent relaxation™ according to Poggessi
et al. (1982). The model reproduces this particular feature fairly well. Moreover.
in the experiment, with loads close to P,, the weight after shortening has been
observed to reset with a little delay. The model reproduces also this feature.

In accordance with the experimental data. in the model, a decrease in load
results in an increase in the speed of both the shortening and the relaxation. Our
model also successfully reproduces the relation between the durations of isome-
tric and isotonic contractions. From the literature it follows that the peak of the
isotonic shortening is achieved later than the peak of the isometric force (Izakov
et al. 1981). In the model, this lag is 100—150 ms.

The force may be plotted against the initial values of the speed of shortening
(Fig. 10). Again, the results of the model relationship are close to the experi-
mentally obtained data (Izakov et al. 1981).

“Length-Force™ Relationship

The characteristic feature of muscle is the dependence of the tension developed
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Fig. 12. Modelling of the “length-force™ relationship. Abscissa: /[, : ordinata: P/P, (P,,, is the
force at [=1{.,). | the “initial length-force™ relationship for isometric contractions at basic
values of the model parameters. 2 — the “length-force™ relationship for passive muscle. 3 — the
“end-sytolic length — end-systolic force™ relationship at basic values of the model’s parameters 4
— the “initial length-force™ relationship for isometric contractions when the dependence of
troponin affinity to calcium ions on the number of myosin crossbridges attaches is switched off.

Table 2. Modelling of the “length-force™ relationship under isotonic conditions

y End sytolic Relative change End-systolic Time to peak
Total end-systohc : = % :

sarcomere length. in length sarcomere of shortening.

length, um .

am (from /,,,) force ms

2.31 2.16 0.99 7.3 350

2.27 2.14 0.97 5.64 370

2.19 2.09 0.94 3.87 370

2.06 1.99 0.88 2.0 370

on the initial muscle length. The results of modelling of this relationship for
isometric contractions are shown in Fig. 11. This figure shows a superposition
of contractions at initial lengths of the sarcomeres from 2.33 to 1.99 pm. A
larger initial length is observed to give stronger force of contraction, maximum
rate of change in force, and maximum rate of relaxation. The data for the other
parameters are presented in Table 1. It is important that the model correctly
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Fig. 13. Imitation ol the efficct of short “stretching refeasing™ eycles on the time-course of 1sometric
contractions. | control isometric contracton. 2 isometric contraction alter deformation. A,
B« deformation acung at different moments ol contraction

describes not only the dependence of the isometric contraction amplitude on the
initial length but also the time courses of contraction and relaxation. The data
shown in the Table show that an increase in the initial length results both 1 a
longer time to the peak isometric tension and a longer characteristic relaxation
time 7, (the ime during which the force falls 1o 30% of its maximum value). The
same data were obtained in the experiments with mammalian papillary muscles
(lzakov et al. 1981). It should be emphasized that both in the model and in
experiments the characteristic ime of relaxation ry, increases with an increase in
the inttial muscle length.

In other words. the model predicts a decrease in the relative speed of
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relaxation with the increasing pre-load. In accordance with the model re-
presentation. this result is due to the effect of the sarcomere length on the aflinity
of troponin for calcium ions.

The “length-force™ relationship can be obtained experimentally also in
another way (lzakov et al. 1981 : Bodem and Sonnenblick 1974). by comparing.
under sotonic conditions. the end-systolic length of the muscle with the end-
svstolic force. 1. e. the total load lifted by the mucle. This procedure is carried
out for isotonic contractions at different loads.

Simulation of this procedure is illustrated in Fig. 12 and in Table 2. The
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Figure compares the length-force relationship under isometric and isotonic
conditions (curves 1 and 3). The isotonic curve is below the isometric one.
Moreover, the greater the shortening (the end-systolic length is smaller). the
larger the difference between the “isometric™ and “isotonic™ length-force rela-
tionships. This difference results from mechanochemical uncoupling. The model
simulates the experimental data (Allen and Kentish 1985; Bodem and Sonnen-
blick 1974) fairly well. Unlike under isometric conditions, changes in the initial
length have an opposite effect on the time to the peak of isotonic shortening.

Simulation of the Effect of Short-Time Changes in Length

One of the manifestations of mechanochemical uncoupling in muscle is the effect
of short-time deformations (Hill 1970; [zakov et al. 1981). The efTects of muscle
deformation depend on its magnitude, on the moment of onset in the contrac-
tion-relaxation cycle. on the direction of the deformation (whether the muscle
is stretched or released). and on the inotropic state of the muscle. The rate of
deformation is also of some importance (Bodem and Sonnenblick 1974: Izakov
et al. 1981). It has been found that the later the onset of deformation in the
contraction-relaxation cycle the more pronounced its inactivating effect. On the
whole. all these phenomena are well simulated by our model. Fig. 13 shows the
action of a short-time “stretch-release™ cycle. It is seen that the inactivating
effect of such deformations is small if they fall within the early phases of the
contraction-relaxation cycle (Fig. 134 and 13B). However even small stretch-
ing during the relaxation phase can result in a fast termination of relaxation
(Fig. 13C). The “release-stretch™ cycles show the same effect (Fig. 14). De-
formations of different type differ in their effects on the time course of contrac-
tion and relaxation.

Conclusions

The results presented herein show that the mathematical model developed by us
simulates a sufficiently large number of experimental data concerning the
mechanics of muscle contraction. They include:

1) Time relations between the dynamics of free calcium. activation and
mechanical tension:

2) Shape of isotonic and isomelric contractions;

3) Dependence of the characteristic time of relaxation on the initial and
end-systolic muscle length and on the load;

4) Length-force and force-speed relationships.
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The above relationships, however, are sinulated by the other known
models as well. The principal contribution of our model is that we succeeded in
modelling a number ol mechanical phencimena reflecting mechanochemical
uncoupling. These phenomena, 1o our knowledge, are not simulated by the
other models of muscle contraction. The model suggested simulates “load-
dependent relaxation™ according to Brutsaert et al. (1984), the eflects of short-
time deformations, chianges in the slope of the “length-foree™ relationship under
the action of inotropic agents, ete. The central idea of the model is the depen-
dence of the aftinity of troponin for calcium on the number of attached cross-
bridges. The probability that a myosin cross-bridge attaches to the actin was, in
turn, defined as the function of the rate of moton and of the mechanical
coordimalte.
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