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Omega-Conotoxin Blockade of Calcium Currents 
in Cultured Neonatal Rat Cardiomyocytes: 
Different Action on EGTA-Modified Calcium Channels 
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Abstract. Calcium currents from neonatal rat ventricular heart muscle cells 
grown in primary culture were examined using the „whole-cell" voltage clamp 
technique. An inward current characterized by large amplitude and slow inac-
tivation decay was induced when the extracellular Ca2+ concentration was 
reduced by EGTA. This current was suppressed by extracellular Na+ removal, 
or by calcium antagonists, and increased by epinephrine and BAY K 8644. 
These findings suggest that this current is carried by sodium ions through Ca 
channels. Both Ca and Na currents through calcium channels were irreversibly 
blocked by omega-conotoxin. Complete blockade developed 10—15 minutes 
after the toxin introduction in the extracellular solution. Blockade of Na cur
rents through calcium channels was characterized by a transient increase of 
current amplitude without any changes in its kinetics and voltage-dependent 
properties. Structural differences between calcium channels in rat and guinea-
pig and frog cardiomyocytes were suggested. 
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Introduction 

Calcium channels are involved in the control of many biological functions 
including excitability, transmitter release, contraction, metabolism and gene 
expression. In cardiac muscle transmembrane calcium fluxes via voltage-
-operated calcium channels determine the plateau phase of the cardiac action 
potential, and underlie the spontaneous activity of cardiac pacemaker cells 
(Reuter 1979; 1984; Noble and Noble 1984; Trautwein and Pelzer 1985). 
Calcium channels also play a crucial role in coupling membrane excitation to 
cellular responses; in cardiac muscle Ca2+ influx through calcium channels 
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induces a rise of cytoplasmic free calcium, triggering cell contraction and 
regulating cellular excitability via Ca2 f-dependent membrane channels (such as 
Ca2

n
+-operated potassium channels (Schwartz and Passow 1983; Callewaert et 

al. 1986) and Ca2 +-dependent non-selective cationic channels 7TI - - (Gigant and 
Cohen 1988; Partridge and Swandulla 1988)). 

Separation, identification and characterization of a variety of excitable 
membrane channels has been achieved largely through the use of specific neu
rotoxins (such as tetrodotoxin, saxitoxin, batrachotoxin, etc. — see Narahashi 
1974; 1986; Conn 1983; Hille 1984 for review); for long, no specific probe was 
available for calcium channel. Only recently some natural toxins which have a 
pronounced effect on calcium transmembrane movement have been found. One 
of these toxins — omega-conotoxin (CgTx), twenty seven amino-acid peptide 
from the venom of Conus Geographus marine snail (Feldman et al. 1987; 
Ahmad and Miljanich 1988; Tu 1987), shows a remarkabale specificity: CgTx 
binds to and blocks a subclass of calcium channels in neurones, but not in 
skeletal muscle, smooth muscle, or cardiac muscle (including single frog and 
guinea-pig cardiomyocytes (McCleskey et al. 1987). 

In neurones CgTx also possesses a property to produce a persistent block 
of high-threshold calcium currents (HI I - and HTN — channels (Kostuyk et 
al. 1988) or N- and L-channels (Tsien et al. 1988)) but only a weak and rapidly 
reversible decrease of low threshold (LTI- or T- channels correspondingly) 
calcium current (Fox et al. 1987a; 1987b; Glossmann and Striessing 1988). 

Here we report voltage-clamp experiments demonstrating that omega-
conotoxin also persistently blocks calcium channels in single neonatal rat ventri
cular myocytes. 

Materials and Methods 

Single cell isolation and culture procedure 

Cells were isolated and maintained in culture using standard techniques (Lehmkhul and Sperelakis 
1963: Pronchyuk 1982). Briefly, neonatal (2 A days old) rat hearts were rapidly removed from the 
chest cavity of anaesthetized animals, and the atrial tissues were removed. Ventricles were rinsed in 
a filter-sterilized calcium-free dissociation solution containing (in mmol/1): NaCl 140; KC1 5.4; 
HEPES 10; glucose 10; pH - 7.4. Cell isolation was carried out by a multiple-cycle procedure 
(DeHaan 1967) in a trypsin (Sigma, USA 0 0 1 5 % w/v) containing dissociated solution. 

Dissociated cells were plated on a flame and ultra-violet presterilized glass coverslips and 
maintained in a medium of the following composition: Dulbecco modified Eagle medium (DMEM, 
Sigma USA) + 10 % NU-Serum (Serva Feinbiochemica, FRG). By day two of culturing, sufficient 
single cells adhered to the cover glass so that experiments could be performed. Experiments were 
carried out between days 2 and 4 of culturing. 
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Experimental procedure 

Glass coverslips with adhering cardiomyocytes were removed from the tissue-culture flasks, trans
ferred to the experimental chamber and bathed in Tyrode solution (see below). Cells were specially 
chosen for recordings to minimize problems associated with spatial non-uniforrnities of membrane 
potential. If there were any signs of inadequate space clamp, the experiment was discarded. 

Patch electrodes were pulled from borosilicate glass capillaries (1.5 mm in diameter) to a tip 
diameter of 1.5 2.0 um. Possible errors introduced by a pipette series resistance were compensated 
by using dynamic series resistance control compensation. Experiments were perfomed in the 
„whole-cell" patch clainp configuration (Hamill et al. 1981). All experiments were carried out at 
room temperature (22 °C). Drugs were applied by pressure ejection from an adjacent extracellular 
micropipette. 

Data acquisition and analysis 

Voltage command pulses were generated by a minicomputer with a self-made interface. Evoked 
currents were measured with a patch clamp electronic setup with 1 GOhm feedback resistor. Data 
were recorded on FM tape, then sampled at 10 KHz with a 12 bit analog-to digital converter and 
stored by the computer for late otf-line anal>sis Data were analyzed using a software developed in 
our laboratory by Dr. Ya. M. Shuba (Shuba and Savtchenko 1985). 

Solutions 

Basic Tyrode solution contained (in mmol'l): NaCl 120; KC1 5.4; CaCl, 5.0; MgCl, 1.1: HEPES 
10; pH 7.4. The sodium-free extracellular solution contained (in mmol,l): CaCl, 15; MgCI2 4; 
TEA-C1 111; HEPES 10; pH 7.4; the calcium free external solution contained: NaCl 60; TEA-C1 
85; HEPES 10; EGTA 5. The pipette solution dialysing the cell interior contained (in mrnol/1): NaCl 
30; CsCl 90; MgCl, 4; HEPES 20; Na :ATP 3; EGTA 10; pH 7.2. 

Drugs 

Tetrodotoxin (TTX) and BAY K. 8644 were obtained from Calbiochem (Switzerland), nifedipine 
was from Sigma Chemical Co. (USA), gallopamil (D-600) was the gift of Dr. G. Trube (Hoffman 
La Roche. Switzerland), omega-conotoxin was kindly provided by Dr. M. C. Nowycky, Medical 
College of Pensylvania, USA. 

Results 

Calcium current 

General 

Depolarization pulses of 160 ms duration to membrane potentials between 
— 50 and + 30 mV (stimulation frequency 0.5 Hz) from the holding potential 
— lOOmV evoked two inwardly directed current components. These com-



150 Savtchenko and Verkhratsky 

Normal Tyrode Normal Tyrode 
+ TTX(10(/jmol/l) 

i mi' iwib ľi i 

40 ms 

B 

-60 -40 -20 0 
membrane potential (mV) 

20 

Fig.l. Separation of calcium and sodium currents in neonatal rat ventricular myocytes. A: (I) 
current elicited by depolarizing pulse for 160 ms to — 30 mV from the holding potential of — 80 mV 
in normal extracellular solution; (2) current elicited by depolarizing pulse to —10mV from the 
holding potential of -80mV after 10/mtol/l TTX administration. B. the I—V curves for these 
currents. 

ponents (Fig. 1) were classified as sodium (/Na) and calcium (7Ca) inward cur
rents. After tetrodotoxin administration (10 //m, a relatively high concentration 
which completely blocks sodium currents in cardiomyocyte membranes (Foll-
mer et al. 1987; Antoni et al. 1988)) only calcium current remained (Figs.l, 2, 
left panel). Further TTX elevation in extracellular milieu produced no changes 
in calcium current parameters. 

Calcium current could also be separated from /Na by reducing the holding 
potential to — 40 mV (Fig. 2, middle panel) when steady-state inactivation of 
sodium channels is virtually complete (Brown et al. 1981; Pidoplichko and 
Verkhratsky 1987). 

Substitution of sodium ions in extracellular solutions by impermeable 
cations is another way for /Ca separation (Fig. 2, right panel). Characteristics of 
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Fig. 2. Calcium currents in neonatal rat ventricular myocytes. A, top: currents elicited by depolari
zing pulses to different potentials from the holding potential of —100 mV in the presence of 
10/jmol/l TTX. B, top: currents from the holding potential of — 40mV in TTX-free extracellular 
solution. C, top: currents from the holding potential of —100 mV in Na + -free, Ca2+-containing 
solution. Membrane potentials are shown at the respective current traces. Bottom: I—V-curves for 
the respective currents. 

calcium currents separated by the above methods were nearly identical (Fig. 2); 
the obtained Ca current records illustrate that there was no TTX-sensitive 
current contribution to /Ca. 

A single type of calcium channels in rat neonatal cardiomyocytes 

The co-existence of multiple types of Ca2+-selective channels have recently been 
shown in several excitable cells (Fedulova et al. 1985; Fox et al. 1987a; 1987b; 
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Fig. 3. Evidence for the presence of a single type of calcium current in single neonatal rat cultured 
cardiomyocyte. The cell was depolarized from two different holding potentials, —80 or - 40 mV, 
to membrane potentials indicated at the respective current traces. 1 - V relationships for the currents 
shown in the right part of the picture: 1 — holding potential — 80mV; 2 - holding potential 
— 40mV; 3 net difference inward current (trace 1 trace 2). 

Tsien et al. 1988; Kostyuk 1989). These current components were distinguished 
on the basis of their voltage and time dependences, ionic selectivity and pharma
cology. Two kinds of calcium channels have been observed in different cardiac 
preparations: in whole-cell recordings from atrial and ventricular cells of adult 
dog (Bean 1985), ventricular myocytes of adult guinea-pig (Mitra and Morad 
1986), frog atrial myocytes (Bonvallet 1988) and in single channel recording 
from adult guinea-pig cardiomyocytes (Nilius et al. 1985). The predominant 
component of calcium permeability of cardiomyocyte membrane activated at 
membrane voltages more positive than — 40 mV was labelled the ,,L"-type, and 
the second component, activated at lower membrane potential values the „T"-
type (see for review Tsien et al. 1987a). Cardiac T-channels were distinguished 
by (1) rapid inactivation; (2) more negative activation potential range, and (3) 
relative insensitivity to pharmacological modulation (Tytgat et. al. 1988). 

For this reason, we examined the types of calcium currents present in single 
neonatal rat cardiac myocytes using the conventional voltage-clamp protocol 
for the separation of high and low-threshold /Ca components (Bean 1985). 

Fig. 3 shows families of ICa currents at different holding potential levels. 
When the holding potential was — 40 mV as compared to — 80 100 mV, 
/Ca was smaller at each testing potential. However, the current- voltage relation
ship of calcium current and the threshold potential of ICd were not affected by 
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Fig. 4. Calcium current run-down during intracellular perfusion of a single neonatal rat ventricular 
myocyte. A: Histogram of the latencies since the start of the recordings to the times at which a 50% 
decrease of the /ta. was observed. B: Changes in current amplitude during intracellular perfusion 
(testing potential - lOmV). C: I—V curves ofr /ca. at 11(1), 27(2), and 33(3) minutes after the start 
of intracellular perfusion. Holding potential — 80 mV. 

the change in holding potential. Moreover, there was no obvious hump on the 
current-voltage curve which would have suggested that low-threshold calcium 
current was responsible for an appreciable amount of the total Ca current. The 
I—V curve for the difference current obtained by subtracting the current elicited 
at holding potential — 40 mV from the one elicited at — 80 100 mV had a 
similar shape as that of total /Ca. 

The obtained threshold of calcium current (—40 mV) and its potential-
-dependent parameters correspond to those typical of the high-threshold cal
cium current. Additionally, we checked the sensitivity of the calcium current to 
pharmacological agents. Both gallopamil and nifedipine in micromolar con-
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Fig. 5. Membrane currents in Ca: * -free solution containing Na+ as the major permeable cation; to 
prevent contamination by currents through sodium 10//mol/l TTX channels was added to the 
extracellular solution. The cell was depolarized for 160ms from holding potential of — 80mV to 
membrane potentials indicated at the respective current traces. I—V relationship for these currents 
is shown in the right part of the figure. 

centrations completely abolished the calcium current; the Ca-channel agonist 
BAY K 8644 produced a 10—30% increase in /Ca amplitude (at the holding 
potential — 40 mV at which BAY K 8644 acts as a calcium channel agonist 
(Sanguinetti et al. 1986)). The calcium current sensitivity to Ca-channel modula
tors also supports the idea about the presence of only one component in the 
calcium current in neonatal rat cardiomyocytes. Low-threshold calcium current 
was also reported to be absent by Argibay et al. (1988) in frog vetricular 
myocytes. No clear evidence about the existence of T-type calcium channels in 
rat cardiomyocytes was also presented by other investigators (Cohen and 
Lederer 1987; 1988; Field et al. 1988). 

ICu rundown 

It is widely believed that functional activity of calcium channels is controlled by 
a number of cytoplasmic metabolism-dependent processes (Kostyuk and Krish-
tal 1977a; Chad and Eckert 1984; Sperelakis 1985a; 1985b). Exchange of 
soluble components between the cytoplasm and the recording pipette during 
intracellular dialysis leads to the disappearance of metabolic support of calcium 
channels and a progressive fall of /Ca amplitude. In our experiments the run-
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Fig. 6. Ca-channel-modulators sensitivity of Na current in low-Ca2 + , TTX-containing extracellular 
solution. The upper panels show superimposed current records before (1) and after (2) addition of 
1 /rniol/1 D-600 (left) or 5//mol/l BAY K 8644. Current records elicited by step depolarizations from 
— 80 mV to — 30 mV. Lower panels: Peak current levels before (1) and after (2) addition of D-600 
or BAY K 8644 are plotted against the membrane potential. 

down of the calcium current was almost complete within 40—50 min (Fig. 4); 
these data are in line with previous reports (Irisawa 1984; Belles et al. 1987). 

Sodium current through calcium channels 

Inward currents carried by monovalent ions through calcium channels when the 
external [Ca2+] is reduced have been detected in a variety of excitable cells: in 
snail neurones (Kostyuk and Krishtal 1977b; Kostyuk 1981; Shuba 1983), frog 
skeletal muscle fibers (Aimers et al. 1984; Aimers and McCleskey 1984), and in 
mouse lymphocytes (Fukushima and Hagiwara 1985). 

In cardiac muscle a lowering of external Ca2+ concentration by chelating 
agents such as EGTA extremely prolongs (up to several seconds) the duration 
of action potential (Hoffman and Suckling 1956; Goto and Abe 1964; Rougier 
et al. 1969; Miller and Morchen 1978). It has been shown that an inward sodium 
current through calcium channels underlies this action potential prolongation 
(Imoto et al. 1985; Matsuda 1986; Levi and DeFelice 1986; Mazzanti and 
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Tig. 7. Omega-conotoxin action on calcium current in the neonatal rat ventricular myocyte. Upper 
panel: Current records in control conditions, 15min after CgTx administration, and 20min after 
uashout by toxin-free extracellular solution. Holding potential: — 80mV; testing depolarization: 

lOmV Lower panel: I - V curves for the initial /Ca (1) and /Ca 10 minutes after CgTx application 
(2). 

De Felice 1987). This kind of calcium channel modification is explained in terms 
ft the existence of high affinity binding sites for Ca2+ in the calcium channel: 
occupation of these sites by Ca2+ ions determines the selective properties of the 
calcium channel and prevents the permeation of monovalent cations (Kostyuk 
cl al. 1983; Hess and Tsien 1984; Tsien et al. 1987b); however, the location of 
ihis site is still a matter of discussion. 

Figure 5 shows membrane currents in low-calcium solution [Ca2+] 
< lOOnmol 1) containing Na+ as the major permeable cation. Sodium ion flux 
through Ca channels produces a large inward current (approximately 3—5-fold 
greater in amplitude compared with the initial Ca current in the same cell) which 
inactivates much slowlier than the initial /Ca. Calcium removal from the ex-
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Fig. 8. Omega-conotoxin action on sodium current through calcium channels in a neonatal rat 
ventricular myocyte. Upper panel: Current records in control conditions. 15min after CgTx 
administration, and 20min after washout by toxin-free extracellular solution. Holding potential: 
— 80mV; testing depolarization: — 10mV. Lower panel: I—V curves for the initial current (1) and 
current 10 minutes after CgTx application (2). 

tracellular solution also produced a 20 mV hyperpolarizing shift in Na+-carried 
current threshold and in maximum of its I—V curve (Fig. 5). 

The suggestion that in the absence of external Ca2+ the inward current is 
carried by sodium ions through calcium channels is derived from the following 
findings. 

(1) The inward current was not affected by addition of 50 /miol/1 TTX to 
the external solution (note that the initial TTX concentration in Ca2+-free 
solution was 10 /imol/1 to prevent INa contamination). 

(2) Organic calcium channel blockers, such as gallopamil (Fig. 6A) and 
nifedipine (not shown) in micromolar concentrations, completely suppressed 
this current. 
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Fig. 9. Time course of Ca2 +-carried current blockade by omega-conotoxin. Current traces obtained 
at different times after CgTx application. Currents were evoked by 160 ms test pulses from holding 
potential of — 80 mV to — lOmV. The respective plot of peak current versus time is shown below. 

(3) Calcium channel agonist BAY K 8644 increased the amplitude of the 
recorded current (Fig. 6B). 

(4) In the presence of isoproterenol (0.5 /miol/1) the amplitude of the inward 
current was increased (not shown). 

(5) Replacing Na+ in extracellular solutions by Tris+ ions led to the 
disappearance of this current. 

(6) The reversal potential of the current studied was approximately + 25 
mV, i. e. close to the Nernst value predicted for the given Na0 and Najn 

(Najn = 30 mmol/1; Na0 = 60mmol/l; £Na+ = + 20 mV). 

Omega-conotoxin action on current through Ca channels 

Omega-conotoxin in 10 /miol/1 concentration abolished both calcium and so-
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Fig. 10. Time course of Naf-carried current blockade by omega-conotoxin. Current traces obtained 
at different times after CgTx application. Currents were evoked by 160 ms test pulses from holding 
potential of — 80 mV to — lOmV. The respective plot of peak current versus time is shown below. 

dium currents through calcium channels. 
Fig. 7 shows Ca2+-carried current traces before and after exposure to the 

toxin, and the current-voltage relationships obtained from the same cell in 
control conditions and during CgTx action; 12—15 minutes after CgTx applica
tion, the 7Ca was almost completely abolished at all test potentials. The washout 
of the toxin could not restore ICá (up to 30 minutes after the start of the washout 
— Fig. 7, right current trace). 

Inhibition of the sodium current through calcium channels by omega-
-conotoxin (Fig. 8) showed the same pattern. 

The time course of omega-conotoxin-dependent ICa depression is shown in 
Fig. 9. CgTx produces a progressive decrease of calcium-carried current am
plitude. In contrast, CgTx action on sodium current through calcium channels 
shows two different phases: during the first 8 minutes after the toxin exposure 
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Fig. 11. The increase of Na current through calcium channels due to the omega-conotoxin action. 
Currents were evoked by test depolarizations from holding potentials — 60 mV to — 20 mV; current 
records 1 min, 5 min after CgTx application, and the difference current are shown. 

an increase of current amplitude without changes in its potential-dependent and 
kinetic properties was observed (Fig. 10, 11), followed by fast suppression of the 
current amplitude. 

Discussion 

Calcium channels in neonatal rat ventricular myocytes 

General characteristics of the calcium current obtained in our experiments are 
in good agreement with data of other authors (Cohen and Lederer 1987; 1988; 
Field et al. 1988). We could not find any evidence for the presence of multiple 
types of Ca channels in neonatal rat ventricular myocytes. Our results indicate 
a single type of calcium current in rat ventricular cells. This finding contradicts 
most published data in this field (Bean 1985; Tsien etal. 1987a; 1988;); however, 
a similar observation on frog ventricular cardiomyocytes was made by Argibay 
and co-workers (1988). 

Our results also confirm the findings about the CA2+-dependent modifica
tion of calcium channels. [Ca2+]0 reduction below 1 /miol/I led to the appearance 
of a sodium current through calcium channel. It is important to emphasize that 
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lowering of extracellular calcium not only caused a loss of Ca channel selecti
vity, but led to a significant shift in voltage-gated properties of calcium channels. 
This finding supports the hypothesis (Kostyuk et al. 1983) about the existence 
of two external Ca2+-binding sites in calcium channel; these sites control both 
selectivity and voltage-operated properties of the calcium channel. 

Secondly, extracellular Ca2+ removal led to a dramatic slow-down of 
calcium current inactivation: the inactivation decay of EGTA-induced sodium 
current was approximately one degree slowlier as compared with the initial 
calcium-carried current. These changes may be attributed to the disappearance 
of Ca2+-mediated calcium channel inactivation (Eckert and Chad 1984; Chad 
and Eckert 1986). Calcium-dependent as well as voltage-dependent inactivation 
has been demonstrated in calf Purkinje fibers (Kass and Sanguinetti 1984; Lee 
et al. 1985), in single ventricular myocytes (Josephson et al. 1984; Mitchell et al. 
1983) and in isolated atrial cells (Bechem and Pott 1985a; 1985b). Moreover, in 
contrast to our data Imoto et al. (1985) and Hardley and Hume (1987) observed 
two components (fast and slow) in the Na4-carried current through calcium 
channels in single guinea pig ventricular myocytes; the fast inactivating com
ponent of EGTA-induced current was attributed to pure voltage-dependent 
inactivation of calcium channels (Hardley and Hume 1987). Our data support 
the idea that in rat cardiomyocytes Ca2+-mediated incativation plays a primary 
role in calcium current decay. 

CgTx action on calcium channels 

Our results show that CgTx produces a persistent blockade of calcium channels 
in the memebranes of cultured neonatal rat ventricular myocytes. These data 
contradict the results obtained by Tsien group (McCleskey et al. 1987); they 
suggested that calcium channels in cardiac muscle cell membranes are insen
sitive to CgTx. This insensitivity distinguishes between two subcathegories of 
high-treshold (L) calcium channels: Ln blocked by CgTx and Lm, resistant to this 
agent (Cruz et al. 1987). Our data may indicate that calcium channels in rat 
cardiomyocytes are structurally different in comparison with Ca channels in 
guinea-pig and frog cardiac muscle cells. 

Secondly, we found that CgTx distinguishes between calcium and EGTA-
modified calcium channels: omega-conotoxin action on sodium currents 
through calcium channels is characterized by a transient increase of current 
amplitude without any changes in current kinetics and potential-dependence. 
The nature of this difference is not yet clear. Interestingly, another calcium 
channel-related natural toxin — maitotoxin — displays a similar time course of 
action on calcium currents in isolated adult rat cardiac ventricular cells. The 
suppression of calcium current by maitotoxin is preceded by a transient increase 
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in Ca current amplitude (Coraboeuf et al. 1988). Similar transient increase in 
Ca2+-carried current under CgTx action was also observed in pheochromocyto-
ma PC 12 cells (Savtchenko and Verkhratsky, unpublished observation). All 
these results may suggest that it is the so far unknown part of the calcium-
controlled calcium channel open probability that is the main target of CgTx 
action. There is some evidence about a protective role of divalent cations against 
CgTx block development (McCleskey et al. 1987). Obviously, such an interac
tion between divalent cations and CgTx underlies the change of toxin action 
during EGTA-modification of calcium channels. 
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