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Stochastic Description of Sodium Channel Gating 
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Abstract. A stochastic model of the sodium channel is proposed. Transitions from 
the resting to the open state of the channel is described by the gamma distribution. 
The open state is temporary with an average open time T, and the channel proceeds 
to the inactivated state. The channel can be represented by two identical control 
molecules which undergo conformation transitions under changes of the electrical 
field. The gating of the channel is analyzed and its relation to the gating current is 
proposed. The movements of the control molecules are not identical with the 
charge movements. Charged parts of control molecules move in the electrical field 
of the membrane and make their conformation energetically possible. The model is 
represented by a set of differential equations, and explicit solutions for long 
depolarizing voltage steps are found. Parameters are determined to fit literary 
experimental data. 
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Introduction 

Excitability is the essential attribute of a living system. One of the most important 
forms of excitability is the generation of the nerve impulse. Our knowledge about 
the mechanism of the nerve impulse derives primarily from experimental and 
theoretical results of Hodgkin and Huxley (1952) on the squid giant axon. The 
structural basis of excitability are selective, voltage dependent ionic channels. The 
first excitability type described was the sodium one. This type of excitation process 
is expressed by the action potential generated by temporary changes of per
meabilities for sodium and potassium ions. The sodium channel, which plays the 
central role in the generation of nerve impulses, is a voltage-regulated integral 
membrane protein. The voltage dependence implies the existence of a molecule 
which is able to respond to the cell membrane potential because it, or parts of it, 
have a charge or a dipóle moment. Movements of a such molecule due to changes 
in membrane potential produce an electric current, a displacement current, also 
called gating current. 

We still have no knowledge on the molecular structure of the sodium channel. 
Its function on the molecular level has been only derived from voltage clamp 
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experiments, noise analysis, gating currents and patch clamp experiments and from 
the phenomenological mathematical description by Hodgkin and Huxley. In 
Hodgkin and Huxley's (1952) model, sodium conductance, gNa, is described by 

gN a=0Na • m 3 . h (1) 

where gNa is the conductance expected when all channels are open. In the most 
popular physical interpretation, it is imagined that a sodium channel becomes 
conducting after three subunits, m, have made independent first order transitions 
from the resting to the activating positions, and closes when a subunit, h, has 
moved from the resting to the inactivating position or as soon as the first m particle 
has reverted to the resting position. Since in this model the sodium channel derives 
its voltage dependence entirely from those of the m- and h -particles, the entire 
gating current should be due to them. However, one of the first definite insights to 
emerge from the study of gating currents is that any proposed physical interpreta
tion of the Hodgkin-Huxley equations for sodium conductance is now ruled out. 
They failed both kinetically and in the description of the steady state (Aimers 
1978). 

A number of experimental results have accumulated (see Goldman 1976), 
including patch clamp experiments (Aldrich et al. 1984) which are not concordant 
with the m*h kinetics and with the assumption of independent activation and 
inactivation. To overcome this discrepancy, several multistate models were con
structed (e.g. Goldman 1976; Jakobsson 1976; Bell and Cook 1979 ; Hoyt 1984). 
The proposed model provides a new possibility to explain observed phenomena. Its 
advantage is a simple fitting to experimental data and a comprehensive molecular 
interpretation. 

Model of channel gating and results 

The excitable biological membrane about which there is most experimental 
information is undoubtedly the membrane of the squid axon. The voltage clamp 
technique made possible direct measurements of ionic currents and their depend
ence on the membrane voltage and ion concentrations. The model is constructed 
with the voltage clamp data obtained by Hodgkin and Huxley (1952) on the giant 
axon of squid. These experiments are the best documented and there also are 
gating currents measurements on the same preparation. 

When the voltage across a resting excitable membrane is changed stepwise to 
a value sufficiently more positive than the resting level, the permeability of the 
membrane to sodium rapidly increases and then more slowly declines despite the 
fact that the membrane voltage is maintained at the positive value which induced 
channel openings (Hodgkin and Huxley 1952). On the other hand, the gating 
current at the same conditions exponentially decreases from a finite value to zero 
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(Armstrong and Bezanilla 1973). This increase and subsequent decrease in sodium 
permeability implies that the sodium channels can progress through at least three 
distinct functional states, i.e. resting, activated and inactivated (Hodgkin and 
Huxley 1952). Thus, a sufficiently positive voltage causes sodium channels to make 
the transitions from a closed resting state to an open conducting state and closed 
inactivated state, which is distinct from the resting state. 

Because nothing is known about the molecular mechanism of the sodium 
channel, to describe such a time course, several assumptions should be adopted 
which have simple implications. 

a) First, the sodium channel has only one conducting state with a definite 
conductance y. 

b) Molecules controlling sodium channels respond to the depolarizing voltage 
step by a jump from the resting state to the active state, and these jumps are 
independent. Therefore, they should have an exponential time distribution with the 
probability density function 

R(r, a) = a exp (-at) (2) 

where or is the intensity of jumps, i.e. the mean number of jumps per time unit. 
c) Let us suppose that p independent transitions of control molecules (of one 

channel) to the active state allow the channel to open. 
d) All the control molecules have the same kinetic parameters. Hence, the 

opening of channels have the gamma distribution with the density of probability 
(see, e.g. Rao 1965) 

G(i, a, p) = ap . t"-1 . exp (-at)/r(p) (3) 

where ľ(p) is the gamma function, a and p are parameters. For p > 2 , the function 
G has qualitatively the same time course as the sodium conductance. 

e) To describe the sodium conductance with the gamma distribution, we shall 
suppose a temporary conducting state of the sodium channel with an average open 
time T. We can use an average channel open time, because T is by about one order 
smaller than the time scale of the sodium conductance as can be estimated from the 
time course of the action potential. The total charge crossing the surface unit of the 
membrane is then 

QN a = N ( V ) T ( V ) y ( V - VNa) 

Its distribution in time, i.e. the membrane current, is 

IN. = N ( V ) r ( V ) y ( V - VNa)G(f, a(V), p) 

and conductance 

0N.O, V) = N(V)T(V)yG(f, a(V),p) (4) 
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where N(V) is the number of channels which pass through the open state during 
a long depolarizing voltage step. 

Fitting Hodgkin's and Huxley's experimental data summarized in their Table 2 
(Hodgkin and Huxley 1952); we can get parameters of the model for the squid 
axon membrane. The value p = 2 is the most suitable to describe principal features 
of the sodium conductance, mainly with respect to the time to peak and the 
descending phase. 

To find parameters of the model we can use special properties of the gamma 
distribution. G(r, a, 2) has a maximum at f = 1/a, where 

3G((, a, 2)/9t = a 2( l - at) exp (-at) = 0 

and the maximal value is Gmax = a/e. 
Because G(t, a, 2) is the only time dependent term in the description of the 

sodium conductance, then it has to reach the maximum at t = 1/a with the value 

i?Namax = N ( V ) T ( V ) y a ( V ) / e (5) 

Now the finding of the parameters of the model is straightforward. Plotting the 
reciprocal time to peak of the sodium conductance we get the parameter a(V). 
Data can be fitted with the curve* 

a(V) = 2.3/(1 + exp ( -0 .05(V + 20))) (6) 

as is shown in Fig. 1. Similarly, plotting gNamax. da we get the voltage dependence 
of Nry. The best approximation gives the curve (Fig. 2) 

22.56/(1+ exp (-0.15(V + 34))) (7) 

A comparison of the sodium conductances computed from this model and the 
Hodgkin-Huxley model is shown in Fig. 3. The proposed model describes the basic 
phenomena of the sodium conductance. The difference mainly concerns the raising 
phase, where the experimental record shows a delay, which is not mimiced by the 
model. Let us analyse this phenomenon. 

* In eqs. (6) and (7), experimental data are fitted with the curve 

/ (V) = a/(l + e x p ( - b ( V - c ) ) ) 

and parameters can be obtained directly from plotted data. The curve, /(V), saturates and asymptotical
ly reaches the value a. The half value of saturation is at c, and 

b=4/(a.f'(c)) 

where / ' (c ) is the slope at c. 
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50 mV 

Fig. 1. Experimental data represent reciprocal values of the time to peak of the sodium conductance 
determined from Table 2 in Hodgkin and Huxley (1952). Data are fitted with the curve a ( V ) = 2.3/ 
/ ( l + e x p ( - 0 . 0 5 ( V + 20))). 

50 mV 

Fig. 2. Experimental points represent gN.ma*(V)e/a(V), where gNB™,(V) are obtained from Hodgkin's 
and Huxley's (1952) Table 2. They represent the product N ( V ) T ( V ) V . Data are fitted with the curve 
22.56/(1 + exp (-0.15( V + 34)). 

Including gating currents into the model 

The voltage dependence of permeability of the sodium channel implies that this 
process begins with the movement of a voltage sensor. This movement of the 
voltage sensor produces a gating current. The time constant of the gating current is 
almost by one order faster than the time constant of the movement of supposed 
control molecules, which is 1/a (compare, e.g. Fig. 5, Bezanilla and Armstrong 
1975). Therefore, the movement of the control molecules is not identical with the 
charge movement. It could be supposed that charged parts of control molecules 
move in the electric field of the membrane and make their active state energetically 
more favourable. Hence, the gating current precedes the movement of the control 
molecules of the channel. 
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Fig. 3. A comparison of the sodium conductances computed from the Hodgkin and Huxley model (a) 
and from the stochastic model (h). The resting potential was - 6 2 mV and depolarizing steps were to 
26; 1; - 1 1 ; - 2 4 ; - 3 0 m V . 

The gating current has an exponential time course as a response to a voltage 
step change. The amplitude of the gating current is scaled with the steady state 
distribution of the charge according to the Boltzmann principle. Therefore, the 
gating current, yu fulfills the first order differential equation 

dvj 
df = -p>. (8) 

with the solution 

y, = Cexp(-j3f) (9) 

where 1//3 is the time constant of the gating current. 
To include the gating current into the model of the sodium channel we should 

write the model in the form of a set of differential equations. The function 
Cf exp (-at) is the solution of a system of the first order differential equations with 
constant coefficients, which has the cannonical form 

dy2 

dr -ay2 
(10) 
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For initial conditions 

is 

and 

dy3 

— = y 2 - a y 3 

y2(0) = y3(0) = 0 

y2 = C exp (-at) 

y3 = Cr exp (-at) 

The variable y2 in the proposed model describes the kinetics of the first moving 
particles of channels, and y3 describes the kinetics of channels consisting of two 
subunits. 

When we suppose that a movement of control molecules is preceded by 
a movement of the charged parts, which is measured as the gating current, one 
possibility of the complex model is the set of equations 

$ - - * • (u) 

dy 
dt y i ~ a y i 

dy3 

where the variables have the same meaning as above. To avoid nonlinearities, the 
assumption adopted that the rate limiting step of the gating process is movement of 
control molecules. 

The solution of the set of differential equations can be expressed in the explicit 
form. The solutions for yt and y3 can be checked experimentally. They are 

y, = Cexp(-/3r) (12) 

y^JZT^ ( f e x P ( - « 0 - ^ ľ (exp ( - a í ) - e x p (-0r))) (13) 

The distribution of charged parts of control molecules in the electric field of 
the membrane fulfills the Boltzmann principle. The number of channels which will 
pass through the open state is equal to the number of channels where both charged 
parts have moved. Therefore the steady state distribution of the channels passing to 
the open state is the square of the steady state charge distribution. This can be 
estimated from the gating current data presented, e.g. by Bezanilla and Armstrong 
(1975), and expressed as 
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1+exp (-0.04 V) ( 1 4 ) 

When N0 is the total number of channels and N(V) is the number of channels 
which are open during a long voltage step V, then, based on our assumptions 

N ( V ) °(1 + exp ( -0 .04 V))- <15> 

and 

flN. = N ( V ) Y T ( V ) ^ - j ^ ( í e x p ( - a í ) - g 3 ^ ( e x p ( - a í ) - e x p ( - j 3 0 ) 

(16) 

The term a2|3 is derived from the fact that the total number of open channels is 
N( V). We should suppose that not only N but also T is voltage dependent. To find 
parameters of this model is also very easy when we know the voltage dependence of 
(3(V) from gating current measurements. From the time to peak of the sodium 
conductivity fmax(V) by Newton's iterative method we have 

a1+1 = ai + (exp (-aiíraax) í l - a,froax + _' 

0 exp ( - )3ima>) ,. (exp (-ait™,) ( -2imax + OifLx- (17) 

<Vmax , ft \ P exp ( - P u ) \ 
(fi-ayUi-ad2) (0-a,)2 ) 

with a0=l/fmax 

The value a with a good accuracy we will get in less than 5 steps. These values are 
plotted in Fig. 4 and values 

N(V)yT(V) = gNamax/y3(imax) (18) 

are plotted in Fig. 5. Because we have already set the voltage dependence of N( V), 
we can find T ( V ) supposing y constant. These values are shown in Fig. 6 and they 
can be fitted by the curve 

T ( V ) = 0 - 0 4 5 + cosh(0.0659(V + 31)) < 1 9 ) 

which is the Eyring rate equation for passage across a single central energy barrier 
(Keynes and Rojas 1976). 

The sodium conductance computed from the model with the included charge 
movement is presented in Fig. 7. There is a qualitative change on the rising phase, 
the delay, which better mimics the experimental data. 
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50 0 50 mV 

Fig. 4. A voltage dependence of a for the model with gating currents. The time constant 1//3 of the 
gating current is supposed to be constant with the value (3 = 10. Data are fitted with the curve 
ct(V) = 4.3/(1 + exp ( - 0 . 0 4 ( V - 2))). 

-50 0 50 mV 

Fig. 5. The values N( V)T( V)y for the model with gating currents plotted versus voltage. The solid curve 
was drawn under assumptions that N is distributed as the square of the charge distribution; y = 10 pS, 
and T ( V ) is fitted as in Fig. 6 (see text). 

i i 1 1 i i i i i — i 1 
-50 0 50 mV 

Fig. 6. Voltage dependence of x for the model with gating currents. The solid curve is 
T( V) = 0.045 + 0.9/cosh (0.065( V + 31)). 
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Discussion 

There are generally two aspects of a mathematical model. The first is, how 
successfully can a model describe all observable phenomena with minimum of 
parameters; the other one is, whether the model reflects in some approximation 
the real mechanism of the process modelled. Let us consider both questions. 

The proposed model describes the basic phenomena of the sodium conductan
ce. It is easy to find parameters from experimental data due to the statistical nature 
of the model. For the simpler version, the intensity of conformational jumps of 
control molecules, a( V), is evaluated as the reciprocal time to peak of the sodium 
conductance and approximated from eq. (6). This is the only voltage dependent 
parameter of the gamma distribution, which describes the time course of the 
sodium conductance. This is scaled with the product of the conductance of one 
channel, the average channel open time and the number of channels passing open 
state. The number of channels, N, passing to open state is voltage dependent, and 
can be derived from Boltzmann's law. Also, both the average open time, r, as 
revealed by patch clamp experiments (e.g. Aldrich et al. 1984) and the channel 
conductance (Fishman et al. 1984), y, are voltage dependent. Therefore, we have 
determined the voltage dependence of the whole product, Nry, from the attained 
maxima of the sodium conductance, simply from eq. (5), and approximated by eq. 
(7). Approximations of a and Nry by eqs. (6) and (7) are not essential for the 
model. They serve only for a concise expression of data and are not further 
interpreted. 

Similarly, for the model with gating currents, j5( V) = 1/T8 is determined from 
the experiment by the exponential fit, and a(V) is computed from eq. (17). The 
product Nry, if there is no further information, is determined as in the simpler 
model. 

The model for the giant axon supposses two transitions of control molecules to 
open one sodium channel. There is no explicit inactivation process because the 
decay of the sodium conductance is here a consequence of the finite number of the 
sodium channels, and because their conducting state is temporary. 

The essential feature is that the model describes the distribution of the states 
of the channel as well, and not only the distribution of control molecules as in the 
case of the Hodgkin-Huxley model. 

In the present paper we have dealt only with the response of the channel to the 
long depolarizing voltage step. The channel passes from the resting state through 
the open to the inactivated state. To complete the model it is necessary to add the 
return to the resting state. The most simple possibility is schematically drawn in 
Fig. 8. The upper row of the diagram shows processes at the resting membrane 
potential, and the lower one those in the depolarized membrane. With the 
exception of the transition to the open state of the channel, which has the gamma 
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2 0 T mS cm" 

Fig. 7. The sodium conductances were computed from the model with gating currents for long 
depolarizing voltage steps. The resting potential was —62 mV and steps were to 26; 1; - 1 1 ; —24 and 
- 3 0 mV. 
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Fig. 8. The proposed model. The upper row represents processes at the resting membrane potential and 
the lower one those at more positive voltages (depolarized). Circles represent control molecules at the 
rest and squares indicate activated control molecules. The tail represents the voltage sensing part, which 
is bent under depolarization and allows the control molecule to reach the active state. Two control 
molecules in the active state form the temporary open channel. The open channel proceeds to the 
inactivated state. This pathway is not reversible and when the membrane is repolarized, the system can 
attain the resting state along a different way. 

distribution, all the others are simple exponential processes. This ;s because the 
rate limiting step is the conformation of the control molecule and because the 
channel is in the open state only if both control molecules are activated. An 
experiment can be designed to determine voltage dependence of all rate constants 
separately. 

The model allows for future modification to provide a more detailed descrip
tion of the channel mechanisms. For instance, due to mutual influence of control 
molecules within one channel, the time constants of their movement can differ from 
each other. This would change the relation of the ascending and the descending 
phases of the conductance, and different time constants could better describe the 
real situation. 
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The question, whether the model reflects in some approximation the real 
mechanism of the process modelled is more complicated. The model may not be 
unique and agreement between the model and data does not prove that the model 
actually reflects underlying molecular mechanisms. However, there are several 
experimental results which are in favour of the proposed hypothesis, expressed by 
the model. Angelides and Nutter (1984) have found from resonance energy-transf
er measurements that at least two TTX receptors are closely arranged. This can be 
interpreted so that each control molecule has a TTX receptor; this is in accordance 
with the number of control molecules in one channel of the proposed model. The 
concurent possibility is aggregation of the channels. This would implicate some 
form of cooperativity for which there are no convincing experimental data 
(Neumcke and Stämpfli 1983). The assumption of the model that the channel 
opens only once per depolarization epoch, then it closes to an inactivated state and 
does not reopen, was experimentally observed in patch clamp experiments by 
Aldrich et al. (1984). 

The Hodgkin and Huxley model describes very well the basic properties of the 
sodium channel. However, there are some experimental results which cannot be 
explained with the simple Hodgkin-Huxley kinetics. These findings concern mainly 
the channel inactivation. They are, e.g. listed by Goldman (1976), Meves (1978). 
Goldman (1976) also showed that only a multistate model can explain the observed 
phenomena. The proposed model represents such a description of the channel 
kinetics. 

Simple experimental situations were described only. To further validate the 
model, it is necessary to check all other available data and also to draw conclusions 
for subsequent testing. This is left for further investigations. 
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