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Single-File Diffusion of Uncharged Particles 
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Abstract. An equation for unidirectional fluxes of nonelectrolytes and for the total 
flux in the single-file transport through a narrow pore has been derived. The 
equation obtained accounts for the correlations of the population of the pore in the 
coordinate of transport. The problem has been solved using superposition approxi
mation and unidirectional fluxes has been found. The population profile in the pore 
was shown to have nonlinear shape; this is principally different from the results of 
the classical diffusion approach. 
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Introduction 

In many biological and physico-chemical systems, particles are transported through 
narrow pores or specialized channels; i. e. the transport process is of the single-file 
nature. The transport through selective channels in biological membranes is a good 
example of such a transport process. Obviously particle transport in such systems 
cannot be described by the classical diffusion equation since the latter is based on 
the idea of free diffusion and does not involve any limitations imposed by the 
single-file nature of the transport. 

To describe the process of single-file transport, a special formalism is required. 
In the "discrete" approach, developed by Heckmann (1965, 1972), Aityan and 
Chizmadzhev (1973), Chizmadzhev and Aityan (1977), Aityan and Kalandadze 
(1977), Kohler and Heckmann (1979), Chizmadzhev and Aityan (1982), Markin 
and Chizmadzhev (1974), the particle transport has been represented as a series of 
successive jumps over a system of potenciál barriers. The system has been 
described by the total state function characterizing probabilities of all the states of 
the system as a whole. However, for purely calculational reasons, the number of 
successive energy barriers to be overcome by a particle in the channel was 
considered small, being approximately 2 to 4. Obviously, in real systems the 
number of barriers is sufficiently large, and the discrete approach (considering 
a small number of barriers) can be valid only if there are a few comparatively high 
barriers in the system. If this is not the case the discrete approach to the 
multibarrier system faces quite complicate mathematical problems. These limita-
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Fig. 1. Scheme of the model. tions do not hold in some special cases only such as a practically empty channel 
(with a single particle in it) or a completely occupied one (Kohler and Heckmann 
1979). 

To solve the transport problem in a system with a large number of nearly 
identical barriers we have attempted deriving a differential equation for single-file 
diffusion which would account for correlations in the channel population and, first 
of all, for the single-file character of the transport itself. To simplify the problem we 
have excluded the effects of the electric field by considering the transport of 
uncharged particles. 

Derivation of single-file diffusion equation 

We suppose that in the transport of nonelectrolytes there are no long-range 
interactions between the particles and only a short-range action occurring as the 
competition of hard spheres for a vacant potential wells. Then to describe the 
transport through any potential barrier it is sufficient to know only the states of 
wells on both sides of the barrier. Let F(YiY2) be the pair correlation function (or 
pair state function) which represents the probability (in assembly) of the state 
(YiY2) of two adjacent wells in a given part of the channel. Y, and Y2 may take 
values 1 or 0 depending upon whether the corresponding well is occupied or vacant 
(Fig. 1). Then the particle flux between these wells can be written as 

/ = v F ( 1 0 ) - vF(01) (1) 

where ;' is the flux from the left to right, and v and v are the rate constants of the 
jumps from the left to the right well and vice versa. Obviously, the rate constants 
are related by 

v = v exp (Ano) (2) 
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where Aii0 = [i°2- [i°\ is the dimensionless difference between standard chemical 
potentials in the second and first of that adjacent potential wells respectively (Fig. 
1). Noting that 

F(1O) + F(11) = 0 , 
(3) 

F(01) + F ( l l ) = e 2 

where ©1 and ©2 are the populations (probabilities of the occupation of the 
respective potential well) of the first and second potential well respectively, and 
assuming that the macroscopic parameters within the channel change smoothly, we 
obtain from Eq. (1) (Chizmadzhev and Aityan 1982). 

/=-Dlf-f[F(10) + F(0 1^d7 W 
where D = vô and ô is the distance between the adjacent wells, x is the transport 
coordinate. 

It appears from Eq. (4) that the inclusion of correlations has affected only the 

term -r- [F(10) + F(01)] — - . In spite of the inclusion of correlations of populations 

d@ 
within the channel, the diffusion term D -7— remained unchanged. Thus 

ax 

in a homogeneous channel with 

fi0 = const (5) 

the flux is represented by the classical diffusion term 

Let us study more in detail the flux through the homogeneous channel 
(Ho = const). Suppose the channel to link two solutions containing particles A and 
B with concentrations CA and CB respectively (Fig. 2). The left solution contains no 
particles B, while there are no particles A in the right one. The flux of particles 
A from the left to the right which is unidirectional flux from the left to the right can 
be expressed as 

/A = v A F(A0) -v A F(0A) = 

= vA[F(A0) + F(AA) + F(AB)] - vA[F(AA) + F(AB)] - (7) 

- vA[F(0A) + F(AA) + F(BA)] + vA[F(AA) + F(BA)] 

where in the pair correlation function F(Yi Y2) the variables Yt can take values A, 
B and 0 which show whether the respective well is occupied by particles of type 
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Fig. 2. Single-file transport of particles A and B. 

A or B, or vacant. The rate constants are vA = vA = vA by virtue of the condition (5) 

since a homogeneous channel is considered. Note that F(BA) = 0 since by virtue of 
the single-file nature of the transport and the absence of particles A in the right 
solution and particles B in the left one. Hence particle A cannot be within the 
channel on right of a particle B. Thus expression (7) yields 

/ A = - D A ^ - D A F ( A B ) / Ô (8) 

where DA=vA<5 and 0 A is the population of the well (with coordinate x) with 
particle A 

0 A = F(AO) + F(AA) + F(AB) (9) 

Similarly the expression for the flux of particles B which is unidirectional flux from 
the left to the right can be written as 

jB = DB^-DBF(AB)/ô (8') 

where /B is directed from the right to the left. All of 0 A , 0 B and F(Y,Y2) are 
functions of transport coordinate x. 

The net flux 

/ = / A - / B (10) 
is 

i = ~ D A ^ T " D B ^ T " (DA ~ D*)F(A B) / ô (ID 

Equation (11) is identical with the classical diffusion equation only if DA = DB. If 
particles A and B are different (DA + DB) the diffusion equation has a correction 
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due to cross states such as (AB). It is interesting to stress that pair states such as 
(AA) and (BB) do not contribute to the correction of the classical diffusion 
equation. Generalizing Eq. (11) to the case when there is a set of particles A, in the 
left solution and Bk in the right one we get 

' '" -^^f - ÍÄ^-^^ (I2) 

Thus the single-file diffusion equation in the homogeneous channel (ft0 = const) 
is of the type (12) and reduces to the classical diffusion equation only if all the 
particles transportable through the channel have the same kinetic characteristics 
(all D„ = D). Generally the diffusion equation (12) involves cross state functions 
F(AiBk) (pair correlation functions of cross states (A,Bk)) which can be in principle 
obtained from balance equations for the pair state functions like those used in the 
papers by Heckmann (1965, 1972), Aityan and Chizmadzhev (1973), Chizmad
zhev and Aityan (1977), Aityan and Kalandadze (1977) and Chizmadzhev and 
Aityan (1977). Generally speaking these balance equations contain state functions 
of higher orders up to the total state function as in any kinetic theory. 

For illustration, we consider unidirectional fluxes with A and B being different 
tracers of the same substance, i. e. DA = DB = D. Unidirectional fluxes, jA and jB, 
are represented by Eqs. (8) and (8'), and the net flux / = jA - /B by the classical Eq. 
(6). Let there be equilibrium on the boundaries of the channel with the correspon
ding solution, i. e. 

0A(O) = ^ C ? T T ; 0 A ( / ) = O; 

0B(O) = O; 0 B ( O = 
yCB 

(13) 

yCB + l 

and for the total population 

0 = 0 A + 0 B (14) 

we have 

where / is the channel length and y is the partition coefficient between the channel 
and the solution. Then, according to Eq. (6) and the boundary conditions (15) the 
steady-state profile of the total population within the channel has the linear form 

0 ( * ) = 0 ( O ) +
0 ( / ) - 0 ( ° ^ (16) 



8 Aityan 

Let us represent the pair correlation function F(AB) in Eqs (8) and (8') as the 
product of the population (superposition approximation) 

F(AB) = 0 A 0 B (17) 

Then Eq. (8) would take the form 

/ A = - ^ - 0 A 0 B (18) 

where 

JA = jblD; X = xl6 (19) 

or taking into account the relation (14), 

J A = - ^ - 0 A ( 0 - 0 A ) (20) 

where 0 is the already known function (16). 

Results 

(I) Symmetrical case 

Eq. (20) may easily be integrated with the inclusion of the boundary conditions 
(13) and the known function (16) in the symmetrical case, i. e. at 0A(O)= 0B(L). 
The expression for the unidirectional flux is obtained in the implicit form 

R + 0 

f ^ H x p ( L R ) (2D 
where 

yCA 
0= „ , . ; R = V 0 2 - 4 J A ; L = lib (22) 

yCA + 1 

From the implicit expression (21) the flux /A can be found graphically as shown in 
Fig. 3, where the respective dependences of the right and left sides of Eq. (21) on R 
are plotted. The unidirectional flux can be obtained by the ordinate of the 
intersection point of these curves, R* 

(R*-&)2-©2 R* 
JA = ^ ^ — - = ~{R*-20) (23) 

From the analysis of Eq. (21) it may be seen that, at low concentrations, CA —» 0 
(i. e. 0 -^ 0) 

JA~0/L (24) 
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Fig. 3. Graphical solution to Eq. (20). Abscissa variable: R ; ordinate: arbitrary units. The solution is 
found from the intersection of the plots for the left and right sides of Eq. (20). 

i. e. the flux tends to the classical limit; in the limit of high concentrations, 
C A _» oo(© - * 1) 

^.rV^r^O-e) e L - l ( e L - l ) 

Thus at high concentrations the unidirectional flux tends to its limiting value 

1 

(25) 

JA = 
e L - l (26) 

which is a function of the characteristic channel length, L. 
It is also interesting to follow the dependence of the unidirectional flux on the 

channel length. If L —> 0 

and if L -z* °° 

0 /20 
" 2 + V T 

JA~e" 

(27) 

(28) 

The distinction between the single-file diffusion and the classical free diffusion 
is also pronounced in the channel population profile. In the case of free diffusion, 
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Fig. 4. Profiles of channel populations 0 A , 0 B , 0 = 0 A + 0 B and of the pair correlation function F(AB) 
in the coordinate of transport at: A — 0A(O) = 0„(L) = O.5; B — 0A(O) = 1, 0„(L) = O.5. 

the profile of the channel population for each tracer, 0 A and 0B , as well as the total 
profile, 0 , were linear in the coordinate whereas in the present case of the 
single-file transport 

where 

0 V 0 2 + 4JA 1 - x 
W A " 2 + 2 1 + x 

R-0 ,VD, 
x = n „ exp (AR) R + 0 

(29) 

(30) 

and the flux, JA, satisfies Eq. (25). The same applies to the profile 0 B . Fig. 4 shows 
the profiles 0 A , 0 B , 0 = 0 A + 0 B and the pair correlation function F(AB). As 
evident from the above analysis, even under symmetrical conditions and superpo
sition approximation, F(AB)= 0 A 0 B , the single-file transport would considerably 
differ from the classical diffusion transport and maximum blocking of the channel 
due to pair correlation function, F(AB) occurs in the central part of the channel 
(Fig. 4A). However, only at low populations, 0 A , 0 B , 0 —* 0, the population 
profiles tend to the linear ones which corresponds to the classical diffusion 
representation. 

(II) Asymmetrical case 

In the asymmetrical case, i. e. at 0A(O) + 0 B (L) Eq. (20) cannot be analytically 
integrated. Therefore, we shall analyze the behaviour of the system using the 



Single-file Diffusion 11 

Fig. 5. Profiles of the channel populations 0 A for: A — 0B(Í-) = O.25; B — 0B (L) = O.5; 
C — 0B(L) = 0.75; D — 0 B ( L ) = 1 at various 0A(O) = 0.1 (curves 1); 0.2 (curves 2 ) ; 0.3 (curves 3) ; 
0.4 (curves 4) ; 0.5 (curves 5) ; 0.6 (curves 6) ; 0.7 (curves 7); 0.8 (curves 8) ; 0.9 (curves 9) ; 1.0 (curves 
10). 

numerical solution to Eq. (20) with boundary conditions (15). As an example Fig. 
AB shows the profiles of populations, 0A, 0B, and the pair correlation function, 
F(AB), at the boundary conditions 

0A(O) = 1; 0A(L) = O; 
0B(O) = O; 0B(L) = O.5. 

Fig. 5 (A - D) shows the population profiles, 0A , for 0B(L) = 0.25; 0.5; 0.75 
and 1, respectively, at various 0A(O). It appears from these figures that the channel 
population profiles have nonlinear shapes which makes them qualitatively different 
from the channel population profiles obtained from the classical diffusion represen
tation. Fig. 5A also shows that profiles 0A slightly differ from the linear ones at low 
0B(L). With increasing 0B(L) the unidirectional fluxes JA and JB start to block 
each other which results in a strong nonlinearity of profiles 0A and 0B (Fig. 
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Fig. 6. Dependence of the unidirectional flux JA on the boundary population 0A(O) at various 
0 B (L) = 0.25 (curves 1); 0.5 (curves 2); 0.75 (curves 3); 1 (curves 4): A — all the curves are shown in 
the same "large" scale to illustrate the threshold-like behaviour of the unidirectional fluxes; B — curves 
are shown in various "small" scales to illustrate the nonlinear behaviour of the unidirectional fluxes. 
Scaling factor A =30 (curve 1), 5 x 10" (curve 2), 1 x 105 (curve 3), 1 x 103 (curve 4). 

5B-D). The dependence of unidirectional fluxes, JA, JB, on the boundary 
concentrations CA, CB (or 0A(O), 0B(L)) is of particular interest. Fig. 6A shows 
the dependences of JA on 0A(O) at various 0B(L). It is clear that the unidirectional 
flux JA decreases almost linearly with increasing 0A(O), and practically disappears 
at 0A(O)~ 0B(L). This threshold-like behaviour of the unidirectional flux JA is less 
pronounced at small 0B(L) only. Such a behaviour of the unidirectional flux can 
readely be explained. Under equal boundary conditions, 0A(O)= 0B(L), the net 
flux J = JA - JB is zero while the unidirectional flux JA = JB is determined by the 
degree of the blocking of the channel, i. e. by the pair correlation function F(AB). 
Here, the higher 0A(O) and 0 B (L) the smaller the unidirectional fluxes. At 
0A(O) > 0B(L) the net flux is 

0 A ( O ) - 0 B ( L ) 

L 

being mainly determined by the transport of particles of the type A, i. e. J~JA. At 
0 A (O)=0 B (L) the flux JA disappears similary to the unidirectional flux under 
symmetrical conditions. Thus at a high population of the boundary well, 0B(L), 
when the symmetrical unidirectional fluxes are small owing to strong blocking 
effects, the dependence of JA on 0A(O) is practically of the threshold-like 
behaviour (Fig. 6A, curve 3). At low populations of the boundary well, 0B(L), the 
symmetrical unidirectional fluxes are comparable to the linear ones, and no 
pronounced threshold-like dependence of JA on 0A(O) is observed (Fig. 6A, 
curve 1). 
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The dependence of JA on 0A(O) at 0A(O)< 0B(L) is also of interest (Fig. 6B). 
It is evident that this dependence is nonmonotonic at high boundary populations 
0B(L) and it becomes monotonic with decreasing 0B(L). This effect is accounted 
for by the fact that the unidirectional flux in this region is determined by both the 
boundary population level which increases the unidirectional flux, and the channel 
blocking by F(AB) which decreases it. Operating in opposite ways, these two 
trends result in a nonlinear dependence of JA on 0A(O). At low boundary 
populations 0B(L), the blocking in the region 0A(O)< 0B(L) is not clearly defined 
(since F(AB is of the second order on 0 ) , which leads to a monotonic increase in 
the dependence curve of JA on 0A(O). 

Thus the unidirectional flux JA is affected by three trends. At 0A(O)> 0B(L), 
the unidirectional flux JA, to within the symmetrical unidirectional flux, is equal to 
the total flux and is practically determined by the difference between these 
boundary populations. Here, at high boundary populations 0B(L) unidirectional 
fluxes are very small, resulting in a threshold-like dependence of the unidirectional 
flux JA on the boundary population 0A(O) (see Fig. 6A). At 0 A (O)<0 B (L) the 
unidirectional flux is affected by two trends: one increasing, due to the concentra
tion gradient, and another decreasing, due to blocking. These two trends lead to 
a nonmonotonic dependence of JA on 0A(O). At low boundary populations 0B(L) 
the blocking, which is of the second order in 0 , is drastically diminished, and the 
dependence of JA on 0A(O) becomes monotonic. 

In the present paper we have derived an equation for single-file diffusion 
which accounts for the single-file nature of the transport (F(BA) = 0) and of the 
correlation of the channel population. To close the chain of equations we used the 
superposition approximation F(AB)= 0 A 0 B , which made it possible to solve the 
problem. Also in this first approximation, the unidirectional fluxes are significantly 
different from those obtained in the classical diffusion representation. However, it 
would be desirable to take accurate account of the pair and higher correlations 
within the channel and to investigate the effect of the electric field on the transport 
of charged particles. These topics will be discussed in our future communications. 

The result of this theoretical approach can be used for interpretation of tracer 
transport experiments in biological and artificial membranes or in superionic 
conductors possess the single-file transport and can make the frame of a general 
interpretation of these phenomena. 
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