Short communication

Potential-Dependent Blockage of Batrachotoxin-Modified Sodium Channels in Frog Node of Ranvier by Calcium Ions

G. N. MOZHAYEVA¹, A. P. NAUMOV¹ and B. I. KHODOROV²

1 Institute of Cytology, Academy of Sciences of the USSR, Tikhoretsky av. 4, 194064 Leningrad, USSR

2 Vishnevsky Surgery Institute, Serpukhovskaya 27, 113093 Moscow, USSR

Voltage clamp method has been used to study the ionic currents through sodium channels modified by steroidal alkaloid batrachotoxin (BTX). Zo perform a complete modification of Na currents (I_{Na}) 4 to 6 min application of 0.019 mmol/l BTX to the node was accompanied by repetitive membrane depolarization (to +60 mV, 2 ms, 10 Hz). Control external solution contained (in mmol/l: 110 Na⁺, 2 Ca²⁺, 10 tetra-ethylammonium⁺, 5 tris(hydroxymethyl)aminomethane⁺, 129 Cl⁻, pH 7.6.

Fig. 1 shows the dependence of "instantaneous" I_{Na} (I_{Na} *) on the membrane potentials. The currents were measured by the use of two-pulse programm shown in the inset: first pulse from the holding potential E_h -130 mV to E_1 -60 mV (in other experiments to -40 or to -20 mV) was designed to open all (or almost all) the modified Na channels, while the second pulse E_2 allowed to measure the tail currents through the open channels at various membrane potentials.

It can be seen that the outward current tends to saturate at E + 60 mV. The inward I_{Na}^* rises as E approaches approximately to -100 mV, however at more negative E, I_{Na}^* decreases (a negative slope of I_{Na}^* -E curve). Increasing of external Ca²⁺ ions concentration from 2 to 20 mml/l leads to moderate decrease of I_{Na}^* over the potential range from -60 to +80 mV and to a strong depression of I_{Na}^* at E - 60 mV. The maximum of the inward I_{Na}^* is shifted by 20—30 mV to more positive E. Nearly the same shift was observed in two other experiments.

The results obtained allow to propose that the negative slope of $I_{Na}^* - E$ relation reflects a fast potential-dependent block of the open Na channels by external Ca²⁺ ions. Potential dependence of this block can be explained on assuption that a certain fraction δ of the applied potential affects the binding site for Ca²⁺ ion in the channel (Woodhull 1973). If one assumes that nonlinearity of I_{Na}^*-E curve in the region of negative E is exclusively due to blocking action of Ca²⁺ ions, then the mean value of δ is 0.43 ± 0.02 (n = 5), the dissociation constant K_D being 200 ± 54 mmol/l.

Very close value of δ was obtained earlier for protonation of the inner acid group in the Na channel (Mozhayeva el al. 1981, 1982). This leads us to conclude that Ca²⁺ binds directly to the acid group of the channel selectivity filter (Hille 1975). It seems to be probable that the analoguous Ca-block of open Na channels at negative E occurs also in normal nerve membrane, however it cannot be revealed readily due to a high rate of normal Na channels closing at these negative E.

Fig. 1. Potential dependent inhibition of instantaneous Na currents (I_{Na}^*) by Ca^{2+} ions. I_{Na}^* were measured at E_2 ; $E_1 = -60$ mV. The holding potential, $E_h = -130$ mV. The leakage currents were subtracted automatically, by the use of analog circuit. Potassium currents were inhibited by 10 mmol/l tetraethylammonium in external solution and 20 mmol/l CsF in the "internal solution" bathing the cut internodes. The external solution contained 110 mmol/l Na⁺ and 2 mmol/l (curve 1) or 20 mmol/l Ca²⁺ (curve 2). Temperature 10 °C.

References

Hille B. (1975): An enssential ionized acid group in sodium channels. Fed. Proc. 34, 1318—1321
Mozhayeva G. N., Naumov A. P., Negulyaev Yu. A. (1981): Evidence for existence of two acid groups controlling the conductance of sodium channel. Biochim. Biophys. Acta 643, 251—255

Mozhayeva G. N., Naumov A. P., Negulyaev Yu. A. (1982): Interaction of H⁺ ions with acid groups in normal sodium channel. Gen. Physiol. Biophys. 1, 5–19

Woodhull A. M. (1973): Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61, 687-708

Received March 12, 1982 / Accepted March 31, 1982